首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110743篇
  免费   7133篇
  国内免费   5426篇
电工技术   4322篇
技术理论   3篇
综合类   6354篇
化学工业   27544篇
金属工艺   16091篇
机械仪表   4151篇
建筑科学   2898篇
矿业工程   5956篇
能源动力   760篇
轻工业   6277篇
水利工程   425篇
石油天然气   2261篇
武器工业   826篇
无线电   7747篇
一般工业技术   19707篇
冶金工业   15641篇
原子能技术   637篇
自动化技术   1702篇
  2024年   570篇
  2023年   2832篇
  2022年   2770篇
  2021年   3013篇
  2020年   2871篇
  2019年   3143篇
  2018年   1627篇
  2017年   2271篇
  2016年   2669篇
  2015年   3236篇
  2014年   6344篇
  2013年   5012篇
  2012年   6097篇
  2011年   6521篇
  2010年   5931篇
  2009年   6905篇
  2008年   7616篇
  2007年   6994篇
  2006年   6388篇
  2005年   6252篇
  2004年   5554篇
  2003年   4668篇
  2002年   3617篇
  2001年   2927篇
  2000年   2437篇
  1999年   1878篇
  1998年   1757篇
  1997年   1551篇
  1996年   1432篇
  1995年   1564篇
  1994年   1313篇
  1993年   1158篇
  1992年   1053篇
  1991年   992篇
  1990年   938篇
  1989年   944篇
  1988年   121篇
  1987年   64篇
  1986年   51篇
  1985年   44篇
  1984年   51篇
  1983年   41篇
  1982年   50篇
  1981年   14篇
  1980年   4篇
  1965年   9篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
81.
蒋帆  赵越  胡吉明 《表面技术》2020,49(2):109-123
超疏水表面由于具有独特的微纳米粗糙结构和低表面能性质,能形成空气垫物理屏障层,减小材料表面与水或其他腐蚀介质之间的接触面积,因此被广泛应用于金属的腐蚀防护。首先简单介绍了超疏水表面的相关理论,主要包括Young氏方程、Wenzel模型和Cassie-Baxter模型。然后,归纳总结了三种制备超疏水表面的有效途径:在低表面能物质上构建微纳米级粗糙结构;先构建出具有微纳米级的粗糙结构,再对表面进行低表面能修饰;一步法完成低表面能修饰和微纳米级粗糙结构的构建。在此基础上,详细地综述了常见的超疏水表面(薄膜或涂层)在金属防护中的应用。进一步介绍了通过在超疏水体系中引入缓蚀剂的方式,构建具有主动防护功能的超疏水表面,并介绍了此种超疏水表面在金属防护中的应用。最后指出了目前的超疏水表面在制备工艺以及耐久性等方面存在的问题,并对其在金属防护领域的应用前景和发展方向作出了展望。  相似文献   
82.
将附有MnO_x的活性碳颗粒(MnO_x/AC)作为燃料电池(FC)的阳极,以研究锰氧化物(MnO_x)催化氨氮氧化过程的电子转移路径。结果表明,有MnO_x附着的活性碳在FC(MnO_x/AC-FC)中对NH_4~+-N的去除率比原始活性碳在FC(AC-FC)中对NH_4~+-N的去除率高1.3倍,且MnO_x/AC-FC的最大电流密度为26.0 m A/m~3,而AC-FC无电流产生。这表明MnO_x可作为电子介体把NH_4~+-N中的电子从阳极传递到阴极,最终被阴极电子受体的O_2接收。当添加质量浓度1 mg/L的Mn~(2+)于MnO_x/AC-FC电解液时,与无Mn~(2+)添加相比,NH_4~+-N的去除率增大至48.8%,可能是Mn~(2+)在MnO_x的自催化作用下能形成新的MnO_x,为催化氨氮氧化提高了更多的活性位,促进了NH_4~+-N的去除。  相似文献   
83.
任凤英  雷浩强  裴聪 《机械》2020,47(4):70-74
采用封严槽的电火花加工方法,设计了一种在电极底座上固定的铜钨合金块。首先采用数控铣削加工的方式将两块铜钨合金块加工成形状、位置分别与叶片大缘板和小缘板上待加工封严槽的形状一致、位置相匹配的两个电极。接着,在电极损耗后,同样采用数控铣削加工的方式重新加工出两块铜钨合金块相应的电极。减小更换电极的频率,避免因频繁更换电极造成电极位置波动而引起的封严槽位置度无法保证的问题。该方法使用两个电极对涡轮导向叶片同一面上的大缘板和小缘板上的封严槽进行同时加工,大幅提高了加工效率;同时,以铜钨合金替代紫铜作为电极材料,铜钨合金的强度更大,使用过程中电极不容易变形,提高了封严槽的加工精度及合格率。  相似文献   
84.
85.
介绍了国内第一条采用以钢构和新材料综合防腐为主钢制管廊示范工程。该项目管廊全长1. 8km,所用钢材全部采自河钢集团。其中155 m的参观段,采用了中科院重防腐涂层技术、高性能涂层和综合阴极等保护措施,其余部分采用热浸锌防腐加耐火涂料,基础部分采用高强抗震钢筋等新材料和新技术,设计使用寿命100年以上。具有造价低,施工难度低、周期短,标准化施工,工程质量可靠,绿色友好等特点,引领了国内钢制管廊行业的发展,为今后城市综合管廊建设提供了借鉴。  相似文献   
86.
淀粉是一种天然、可再生和可生物降解的聚合物,是自然界中第二大丰富的生物质材料。因其结构复杂性,多年来科学家一直致力于淀粉结构研究。目前,最为公认的淀粉模型为同轴半结晶的多尺度结构,由此衍生出两种淀粉纳米微粒的制备方法:1)酸水解处理无定形区的半结晶颗粒产生淀粉纳米微晶;2)由糊化淀粉得到淀粉纳米颗粒。文章从淀粉纳米颗粒的制备、属性和应用的角度进行综述,发现淀粉纳米颗粒可作为填充剂改善生物复合物的机械性能和阻隔性能。当下,致力于寻求创新有效、可持续、在工业包装中有广泛应用的方案系统研究有待于继续加强;同时淀粉纳米颗粒与其它生物聚合物相混合的研究开发将成倍增长,且得到越来越多的关注。  相似文献   
87.
纳米纤维素源于天然高分子化合物纤维素,是近年来研究热度颇高的高分子纳米材料,主要取之于可再生的自然界植物资源,具有生物可降解、机械强度高、较高的环境安全性等性质。纳米纤维素在食品工业及食品包装行业中被得以广泛应用。纳米纤维素具有优异的性能,可提高食品包装复合材料的一些性能,并可赋予包装材料特殊的功能。本文简单介绍了纳米纤维素,着重阐述了纳米纤维素在食品包装材料中的应用。  相似文献   
88.
温度是生物净化滤柱运行的一个重要参数,采用生物净化滤柱处理模拟含氨氮、铁、锰地下水,考察水温从约25℃降到约6℃过程中氨氮、铁、锰的去除效果。结果表明,出水氨氮、总铁、锰的浓度分别低于0.15mg/L、0.1mg/L、0.05mg/L,均低于国家标准。出水总铁、锰均未受到水温下降的影响,但是出水氨氮浓度逐渐从约0.02mg/L升高到约0.12mg/L。进一步分析发现,铁主要在滤层的0~0.4m段去除,去除效果没有受到水温变化的影响。氨氮、锰主要在滤层的0~0.8m段去除,其沿程浓度均随水温降低而明显升高。氨氮、锰的生物去除符合一级动力学反应,水温为24.6℃、15.3℃、6.7℃时,两者的动力学常数k分别为0.154min-1、0.186min-1,0.143min-1、0.175min-1,0.103min-1、0.163min-1;半反应时间t1/2分别为4.51min、3.72min,4.83min、3.96min,6.72min、4.24min。随着试验水温的降低,氨氮、锰的去除效果明显受到影响。  相似文献   
89.
三氧化钨(WO_3)能被用作可见光响应光催化剂,但由于导带位置较低、在本体中光生电荷载流子复合几率较高等因素,导致其量子产率较低,从而制约了其实际应用。所以,需要对WO_3进行改性以提高其光催化性能。结合近年来国内外相关文献,综述了WO_3掺杂改性的研究现状,并对WO_3基光催化材料的发展趋势进行了展望。  相似文献   
90.
《中国塑料》2020,(4):89-89
由张玉霞编著、机械工业出版社出版的《可生物降解聚合物及其纳米复合材料》一书于2017年6月出版,本书介绍了可生物降解聚合物的种类及目前的生产与应用状况,重点介绍了目前研究得较多、有一定的生产量并得到了一定程度上应用的几种可生物降解塑料,包括可再生资源基、微生物参与制得的可生物降解塑料——乳酸和聚羟基烷酸酯,以及石油基可生物降解塑料——聚己内酯、聚丁二酸丁二醇酯、聚乙烯醇、聚对苯二甲酸己二酸丁二醇酯等,涉及其化学结构、合成工艺、力学性能、熔融行为与结晶性能、成型工艺等;同时还介绍了其改性方法,包括共混改性及其与纳米材料的复配方法,重点介绍了各种可生物降解塑料与纳米层状硅酸盐(纳米黏土、蒙脱土等)复合材料的制备工艺、复合材料结构、物理与力学性能、熔融行为与结晶性能、流变性能、阻透性能、阻燃性能等,其中各类可生物降解塑料/层状硅酸盐纳米复合材料的制备工艺重点介绍了原位聚合插层法、熔融插层法和溶液插层法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号