首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3902篇
  免费   434篇
  国内免费   153篇
电工技术   336篇
综合类   293篇
化学工业   454篇
金属工艺   180篇
机械仪表   232篇
建筑科学   430篇
矿业工程   123篇
能源动力   94篇
轻工业   718篇
水利工程   143篇
石油天然气   101篇
武器工业   39篇
无线电   395篇
一般工业技术   312篇
冶金工业   116篇
原子能技术   46篇
自动化技术   477篇
  2024年   70篇
  2023年   301篇
  2022年   236篇
  2021年   256篇
  2020年   269篇
  2019年   351篇
  2018年   308篇
  2017年   126篇
  2016年   136篇
  2015年   197篇
  2014年   366篇
  2013年   235篇
  2012年   190篇
  2011年   184篇
  2010年   130篇
  2009年   151篇
  2008年   117篇
  2007年   151篇
  2006年   94篇
  2005年   94篇
  2004年   83篇
  2003年   46篇
  2002年   63篇
  2001年   39篇
  2000年   49篇
  1999年   30篇
  1998年   28篇
  1997年   21篇
  1996年   18篇
  1995年   12篇
  1994年   22篇
  1993年   18篇
  1992年   8篇
  1991年   20篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   2篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有4489条查询结果,搜索用时 261 毫秒
91.
目的 通过β-环糊精(β-CD)在聚氨酯膜表面进行分子自组装来增加聚氨酯表面的羟基数量,进而增强改性聚氨酯分子在高湿度环境下的电输出性能。方法 采用分子自主组装的方法获得改性聚氨酯膜。聚氨酯颗粒在N,N-二甲基甲酰胺中溶解并通过流延法成膜后,先后在γ-缩水甘油醚氧丙基三甲氧基硅烷/甲醇溶液和氨基环糊精溶液中浸泡、干燥,得到β-CD功能面。以改性的聚氨酯为摩擦纳米发电机(TENG)的电正性摩擦层,以聚四氟乙烯(PTFE)为电负性摩擦层,组装得到风驱动摩擦纳米发电机。结果 β-环糊精的改性增加了聚氨酯膜表面的羟基数量,使聚氨酯膜在高湿度环境中可以与水分子形成氢键,固定水分子一同参与摩擦起电,增加了聚氨酯基摩擦纳米发电机在高湿度环境中的电输出性能。当湿度从15%增加到95%后,改性聚氨酯基摩擦纳米发电机的短路电流增加了432%,且湿度越大,电输出越大。同时,改性聚氨酯基摩擦纳米发电机在喷洒水滴的情况下,也能点亮248个LED灯。结论 β-环糊精的改性可以显著提升聚氨酯基摩擦纳米发电机在高湿度环境下的电输出性能,且电输出随湿度的增加而增加,显示了出色的耐湿性,对扩展聚氨酯基摩擦纳米发电机的应用...  相似文献   
92.
采用化学气相沉积(CVD)法在镍基高温合金K444表面制备了渗铝涂层。850、950和1050℃制备的涂层均为双层结构,外层是NiAl相,内层为互扩散区。涂层随沉积温度升高而增厚,3个沉积温度制备的CVD渗铝涂层厚度分别约为6.2、12.5和30.3μm。研究了K444合金及3个温度制备的CVD渗铝涂层在750℃NaCl+Air条件下的腐蚀行为。结果表明,K444合金表面发生氧化和氯化反应,腐蚀严重。而CVD渗铝涂层表面生成了保护性Al2O3,抗NaCl腐蚀能力增强,1050℃沉积温度下制备的CVD渗铝涂层抗腐蚀能力最强。  相似文献   
93.
在学校硬件大为改善之际,我们提出软环境建设的概念,通过编写了仪器分析放培训教材、仪器操作规程及仪器操作注意事项等,既适应学校的快速发展,又加强了仪器分析测试平台的分析测试服务水平,保证了分析测试服务质量,建立了较为完善的仪器分析测试平台放软环境。  相似文献   
94.
采用吸收/吸附-催化有氧分解耦合工艺净化合成氨及尿素生产过程中产生的含氨废气。介绍了净化合成氨弛放气的工程示范装置的工艺操作条件、工艺流程及运行效果。氨含量约3%的弛放气经过离子液吸收塔处理后,气体中的氨平均浓度降到45×10-6以下,再经4级蒸馏后,回收氨的浓度可达95%;氢氨回收膜分离装置含少量氨的工艺尾气经催化反应器处理后,排放氨浓度小于1.4×10-6;弛放气中氨的净化率达到99.99%。  相似文献   
95.
选择聚酯多元醇PEPA/MDI体系,采用半预聚物法工艺合成了聚氨酯弹性体,并考察了催化剂用量、扩链剂种类及并用体系对试样固化速率的影响,还探究了工艺条件对试样力学性能的影响。结果表明,催化剂用量为0.04%时试样综合性能较好,增大TMP用量试样脱模时间缩短,力学性能下降,后硫化条件为100℃×16h时能较为合适地提高试样性能。  相似文献   
96.
大空隙级配碎石因其良好的透(排)水性能逐渐用作“海绵城市”路面结构的基层填料,但振动荷载作用下填料颗粒在重新排列过程中的运动姿态变化以及能量状态空间分布规律仍不明确。文章基于颗粒堆积理论设计了不同级配的碎石填料,开展不同激振参数组合下的室内新型平板振动压实试验,在试样内部不同位置处放置新型智能颗粒传感器(SmartRock)实时监测压实过程中颗粒的运动姿态变化,由颗粒加速度响应分析填料内部运动能量的时空演变规律,进而提出基于颗粒运动和能量分布的填料压实质量评价新指标。研究结果表明,级配碎石填料振动压实过程可明显分为两个不同阶段:第一阶段大部分能量耗散于碎石颗粒的竖向运动及空隙的压缩,占主导的颗粒竖向运动未形成致密的骨架结构;第二阶段颗粒主要发生水平面内的平动以及竖直面内的滚动,颗粒的长轴取向逐渐趋近于“平躺”状态,大部分能量耗散于颗粒间空隙的填充,颗粒逐渐互相紧密咬合嵌挤并形成稳定的骨架结构。试样中上部颗粒的运动指标可较好地评判压实状态,当颗粒水平向运动能量从逐渐增大过渡到逐渐减小至几乎没有任何能量分布但竖向能量分布突增时,表明试样已达到较优的压实状态,新的颗粒运动和能量指标可为连续压...  相似文献   
97.
为防止隔震层在极罕遇地震作用下出现过大变形而导致隔震设施损坏,部分隔震结构安装了钢墩或钢筋混凝土墩等刚性限位装置。为了研究刚性限位对基础隔震结构动力响应的影响,设计三层单跨钢框架基础隔震结构以及钢墩、钢筋混凝土墩、带橡胶垫层钢墩三种刚性限位器,并进行振动台试验。研究不同预留间隙时三种限位器对基础隔震结构的位移、加速度、接触力以及隔震支座竖向荷载等动力响应影响的规律。试验结果表明,刚性限位器能有效减小其隔震层位移,但也会对上部楼层产生较高大的不利响应,同时会增大隔震支座的竖向荷载,甚至使支座产生拉应力。在钢墩前设置橡胶垫层能明显减小上部结构的加速度响应,对上部结构位移响应、隔震支座竖向力及碰撞点处接触力影响不大。  相似文献   
98.
研究超大城市周边的传统村落保护,探寻超大城市周边传统村落乡村振兴途径。以北京市延庆区榆林堡村为例,在分析基本情况、提炼文化特色的基础上,指出榆林堡村乡村振兴的困境,并最终提出以文化复兴带动乡村振兴策略,以文化为主要出发点,传承并发展历史文化,改善村落环境风貌,促进村落产业转型,实现"文化兴村、文化兴产、文化兴人",以期为超大城市周边传统村落振兴提供借鉴。  相似文献   
99.
王红军  李治  涂建  张林萌  胡亮 《建筑结构》2019,49(21):43-48
第七届世界军运会主赛场主体结构采用钢筋混凝土框架结构,屋盖采用车辐式索承网格钢结构,为了保证屋盖结构受力安全合理,主体结构设计尤为重要。由于桩基持力层不同,需对基础不均匀沉降进行分析,发现差异沉降过小可以忽略其对屋盖和主体的影响。在进行主体结构设计时,重难点问题主要体现在屋盖对主体结构的影响和超长结构的分析两个方面。通过计算分析,屋盖对主体的影响主要为支承屋盖的框架柱和下一层相邻跨梁板;超长结构温度收缩问题可以通过合理考虑施工方案和采取有效措施,达到减小温度应力和节约工期的目的。  相似文献   
100.
基于先导发展模型,分析了±800 kV输电线路直线塔的雷电屏蔽性能,并研究了工作电压、杆塔高度、地形地貌和线路保护角的影响规律,结果表明,正极性工作电压使得最大绕击电流和绕击率增加,而负极性工作电压使得最大绕击电流和绕击率有所降低,但整体而言,考虑工作电压的线路绕击率高于不考虑工作电压的情况,前者约为后者的两倍;随着线路杆塔高度和保护角的增加,直流线路的雷电绕击跳闸率逐渐增大;大地平面朝着线路侧倾斜,会增强地面的屏蔽效应,使得雷电绕击线路的概率降低。考虑直流输电线路的实际参数,评估了四川省±800 kV锦-苏直流输电线路、±800 kV宾-金直流输电线路和±800 kV复-奉直流输电线路的雷电屏蔽性能,发现了直流输电线路的雷电屏蔽性能的极性效应,并获得了3条直流输电线路的高风险杆塔分布,为线路的防雷改造提供了指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号