首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   24篇
  国内免费   26篇
电工技术   1篇
综合类   13篇
化学工业   50篇
金属工艺   6篇
机械仪表   4篇
建筑科学   3篇
能源动力   13篇
轻工业   2篇
石油天然气   1篇
武器工业   1篇
无线电   60篇
一般工业技术   110篇
冶金工业   2篇
原子能技术   1篇
自动化技术   4篇
  2023年   10篇
  2022年   5篇
  2021年   21篇
  2020年   14篇
  2019年   10篇
  2018年   2篇
  2017年   12篇
  2016年   6篇
  2015年   5篇
  2014年   13篇
  2013年   14篇
  2012年   12篇
  2011年   12篇
  2010年   4篇
  2009年   16篇
  2008年   7篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   4篇
  1988年   3篇
  1985年   1篇
  1979年   3篇
  1978年   2篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
1.
Dual-band electrochromic smart windows capable of the spectrally selective modulation of visible (VIS) light and near-infrared (NIR) can regulate solar light and solar heat transmittance to reduce the building energy consumption. The development of these windows is however limited by the number of available dual-band electrochromic materials. Here, plasmonic oxygen-deficient TiO2-x nanocrystals (NCs) are discovered to be an effective single-component dual-band electrochromic material, and that oxygen-vacancy creation is more effective than aliovalent substitutional doping to introduce dual-band properties to TiO2 NCs. Oxygen vacancies not only confer good near-infrared (NIR)-selective modulation, but also improve the Li+ diffusion in the TiO2-x host, circumventing the disadvantage of aliovalent substitutional doping with ion diffusion. Consequently optimized TiO2-x NC films are able to modulate the NIR and visible light transmittance independently and effectively in three distinct modes with high optical modulation (95.5% at 633 nm and 90.5% at 1200 nm), fast switching speed, high bistability, and long cycle life. An impressive dual-band electrochromic performance is also demonstrated in prototype devices. The use of TiO2-x NCs enables the assembled windows to recycle a large fraction of energy consumed in the coloration process (“energy recycling”) to reduce the energy consumption in a round-trip electrochromic operation.  相似文献   
2.
魏红莉  何峰  王平 《玻璃》2006,33(1):34-37
概述了无机电致变色材料,变色机理,阐述电致变色玻璃的结构,并对膜层间可能的组合进行了分析,最后展望了无机电致变色玻璃的应用前景.  相似文献   
3.
变色材料的研究进展   总被引:1,自引:0,他引:1  
介绍光致变色材料、热致变色材料和电致变色材料的变色原理、研究现状、制约发展的条件及其它们在军事伪装、汽车、建筑、纺织服装和日用品等领域的应用。重点探讨电致变色材料(导电高分子、无机与有机制成的复合薄膜、其他类高分子电致变色材料等)。在此基础上,对变色材料的发展趋势进行展望,并指出电致变色材料是未来发展的趋势。  相似文献   
4.
将电致变色玻璃实物安装于上海闵行一实验台进行测试。这个实验台包括2个几乎相同的办公建筑会议室,南侧是玻璃窗。其中一个会议室安装电致变色玻璃,可见光透过率为0.01~0.59,另一个会议室安装Low-e玻璃。2个房间均安装了内遮阳帘。研究中分析了电致变色玻璃对室内光环境和热环境的控制效果,同时,与安装Low-e玻璃和内遮阳的会议室的光、热效果进行对比。结果表明,非空调工况时,电致变色玻璃能够提供更均匀、稳定和舒适的室内热环境;同时,电致变色玻璃能够控制室内照度在一定范围内,特别适用于办公建筑室内光环境的舒适性。  相似文献   
5.
An easily accessible anthraquinone-benzodithiophene-based high bandgap polymer (PTAq) was synthesized by Stille coupling reactions in remarkably high yield (96.5%). The highest occupied molecular orbital energy level of the polymer was estimated from the onset of oxidation in a cyclic voltammetry study to be −5.7 eV. PTAq showed an orange-to-green color switching with the application of a 1.0-V external potential to the polymer film, which was visible to the naked eye. The optical behavior change was also monitored using ultraviolet–visible absorption spectroscopy and revealed a respectable 75% transmittance change when the polymer film was subjected to a 1.0-V external potential. The high color contrast observed makes PTAq one of the most promising materials for electrochromic device applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47729.  相似文献   
6.
7.
In this study, the effect of pendant pyrene on the optical and electronic properties of poly(2,5‐dithienylpyrrole)s was studied. For this purpose a new pyrene coupled 2,5‐dithienylpyrrole derivative (SNS‐pyrene) was synthesized through click reaction. SNS‐pyrene was electrochemically polymerized and its electrochemical and optical properties were investigated by electrochemical and optical techniques. The polymer had a band gap of 3.36 eV and displayed light green to blue color variation upon oxidation in less than 2.48 s. Additionally, electrochemical copolymerization of SNS‐pyrene with 3,4‐ethylenedioxythiophene was achieved whilst a detailed investigation was performed on the effect of electrochemical polymerization conditions on the optoelectronic properties of the copolymers. Studies revealed that the copolymers exhibit multichromic reversible redox behavior with lower band gaps and shorter switching times than their parent polymer, P(SNS‐pyrene) © 2014 Society of Chemical Industry.  相似文献   
8.
本文采用磁控溅射方法,通过金属钼靶材在Ar+O2气氛中反应溅射制备了氧化钼薄膜.在制备样品过程中改变反应气氛O2的流量,保持其它参数不变,得到不同的氧化钼薄膜.采用X射线衍射(XRD)和扫描电子显微镜(SEM)方法对MoO3薄膜样品结构进行表征.XRD测试结果表明MoO3薄膜样品均为非晶结构.MoO3薄膜样品的光学性能和电致变色性能采用分光光度计进行测试研究.研究结果表明,当反应气氛O2/Ar流量比例为1:5时,所制备的样品具有较高的可见光透射率,可见光平均透射率为90%,并且电致变色性能较好,调色范围达到了66.94%.  相似文献   
9.
Interface engineering has attracted great interest and is essential for the fabrication of thin‐film devices, such as smart windows. In this study, a solid‐state conversion reaction for the development of an interlayer enriched with lithium peroxide (Li2O2) is presented for an electrochromic device. We demonstrate that efficient lithium insertion and electron transport can be achieved by the inclusion of a Li2O2‐rich interlayer between an active electrochromic material and Li ion solid‐state electrolyte layer. The presence of a Li2O2‐rich interlayer enhances electrochromic efficiency, kinetics, optical contrast, and bleached‐state transparency in a nickel oxide‐based electrochromic thin film. This work opens up new opportunities to enhance the functionalities of thin‐film devices by solid‐state conversion reactions.  相似文献   
10.
采用恒电位法在FTO玻璃上沉积Co与Ni摩尔比为0.16:1的薄膜,用X射线衍射仪、扫描电镜和能谱仪分析了膜的成分、结构和形貌,用紫外-可见分光光度计表征了膜的透光性能,用循环伏安法表征了膜的电化学稳定性和可逆性,用双电位阶跃法表征了膜的开关响应时间,研究了钴掺杂对氧化镍薄膜电致变色性能的影响。结果表明,钴掺杂使NiO薄膜颗粒更加细小和均匀,提高了薄膜在可见光波段着色态与消色态之间的透光率差值,降低了电致变色反应的工作电压,有利于薄膜在电致变色过程的可逆性,缩短了着色响应时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号