首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36707篇
  免费   3915篇
  国内免费   2830篇
电工技术   2573篇
综合类   2880篇
化学工业   1961篇
金属工艺   724篇
机械仪表   4002篇
建筑科学   949篇
矿业工程   871篇
能源动力   569篇
轻工业   723篇
水利工程   222篇
石油天然气   372篇
武器工业   414篇
无线电   7983篇
一般工业技术   2512篇
冶金工业   226篇
原子能技术   108篇
自动化技术   16363篇
  2024年   62篇
  2023年   492篇
  2022年   796篇
  2021年   1010篇
  2020年   1030篇
  2019年   912篇
  2018年   858篇
  2017年   1477篇
  2016年   1632篇
  2015年   2109篇
  2014年   2939篇
  2013年   2538篇
  2012年   3328篇
  2011年   3604篇
  2010年   2451篇
  2009年   2643篇
  2008年   2574篇
  2007年   2775篇
  2006年   2147篇
  2005年   1555篇
  2004年   1206篇
  2003年   1070篇
  2002年   771篇
  2001年   663篇
  2000年   543篇
  1999年   423篇
  1998年   329篇
  1997年   437篇
  1996年   240篇
  1995年   221篇
  1994年   167篇
  1993年   115篇
  1992年   94篇
  1991年   87篇
  1990年   54篇
  1989年   28篇
  1988年   26篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   9篇
  1983年   6篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
2.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
3.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
4.
The heterogeneous catalysis of transesterification of gmelina seed oil to biodiesel is evaluated. The oil was extracted from the seeds with n‐hexane by solvent extraction and characterized to determine its physiochemical properties. Response surface methodology was applied to optimize the effect of process variables on the biodiesel yield. The base‐activated clay catalyst performed as montmorillonite clay with the characteristic property of a Brønsted acid. It has an improved surface area after activation that enhanced its catalytic activity on transesterification reaction. Under optimal conditions, the biodiesel yield was 70.1 %, thus demonstrating that the model predicted well the biodiesel production.  相似文献   
5.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
6.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
7.
文中提出了一种利用有限数量的相量测量单元(PMU)和相量数据集中器(PDC)设计最优监控结构的方法。通过在大量的设定值场景下,使电力系统可观测性曲线的期望值最大化,同时使通信基础设施成本最小化,最终确定PMU和PDC的最佳位置。提出了一种非线性动态扩展卡尔曼滤波(EFK)状态观测器。这种状态观测器可以将暂态行为转换为由代数微分方程描述的广域电力系统,而无需非线性反演技术。最后以IEEE-5电力系统为例,说明了该方法的有效性。  相似文献   
8.
A novel image sequence-based risk behavior detection method to achieve high-precision risk behavior detection for power maintenance personnel is proposed in this paper. In this method, the original image sequence data is first separated from the foreground and background. Then, the free anchor frame detection method is used in the foreground image to detect the personnel and correct their direction. Finally, human posture nodes are extracted from each frame of the image sequence, which are then used to identify the abnormal behavior of the human. Simulation experiment results demonstrate that the proposed algorithm has significant advantages in terms of the accuracy of human posture node detection and risk behavior identification.  相似文献   
9.
Formic acid (HCOOH, FA), a common liquid hydrogen storage material, has attracted tremendous research interest. However, the development of efficient, low-cost and high-stable heterogeneous catalyst for selective dehydrogenation of FA remains a major challenge. In this paper, a simple co-reduction method is proposed to synthesize nitrogen-phosphorus co-functionalized rGO (NPG) supported ultrafine NiCoPd-CeOx nanoparticles (NPs) with a mean size of 1.2 nm. Remarkably, the as-prepared Ni0.2Co0.2Pd0.6-CeOx/NPG shows outstanding catalytic activity for FA dehydrogenation, affording a high TOF value of 6506.8 mol H2 mol Pd?1 h?1 at 303 K and a low activation energy of 17.7 kJ mol?1, which is better than most of the reported heterogeneous catalysts, and can be ascribed to the combined effect of well-dispersed ultrafine NiCoPd-CeOx NPs, modified Pd electronic structure, and abundant active sites. The reaction mechanism of dehydrogenation of FA is also discussed. Furthermore, the optimized Ni0.2Co0.2Pd0.6-CeOx/NPG shows excellent stability over 10th run with 100% conversion and 100% H2 selectivity, which may provide more possibilities for practical application of FA system on fuel cells.  相似文献   
10.
《Ceramics International》2022,48(11):15243-15251
Green combustion was used to prepare a ferrite composition of Mg0.4Zn0.6Fe2O4 using a blend of fresh lemon juice as a natural fuel-reductant. Effect of heat treatment on phase, morphological, dielectric, and humidity sensor properties is discussed. The formation of a cubic spinel ferrite has been established by XRD-diffraction and vibrational spectroscopic studies. The experimental lattice parameter ranges from 8.3721 to 8.3631 Å. The broadening of octahedral band (υ2) in the vibrational spectra is an identification for the existence of ferrite nanoparticles in various sizes. The typical crystallite size ranges from 10.2 to 36.9 nm. Using micrographs obtained from field-effect scanning electron microscopy (FESEM), researchers observed a spherical-shaped microstructure with agglomerated nanoparticles. Dielectric investigations have shown that the current ferrite composition has typical dielectric dispersion. The highest reported value for saturation magnetization (Ms) in the present study is 33 emu/g. Magnetic behaviour is primarily influenced by magnetocrystalline anisotropy, cation distribution, and crystallite size. The existence of void spaces in the sintered samples, as well as their porous nature, rendered them suitable for humidity sensor applications. Sintered samples have good sensing capability at 900 °C. The current findings are integrated in terms of cation distribution and magnetocrystalline anisotropy, assuming fine size effects of ferrite nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号