首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103005篇
  免费   12202篇
  国内免费   6848篇
电工技术   8434篇
技术理论   4篇
综合类   10757篇
化学工业   12920篇
金属工艺   9053篇
机械仪表   9813篇
建筑科学   10036篇
矿业工程   2927篇
能源动力   3209篇
轻工业   4039篇
水利工程   2842篇
石油天然气   4001篇
武器工业   1167篇
无线电   10221篇
一般工业技术   15436篇
冶金工业   4803篇
原子能技术   972篇
自动化技术   11421篇
  2024年   172篇
  2023年   1464篇
  2022年   2464篇
  2021年   3049篇
  2020年   3281篇
  2019年   2985篇
  2018年   2821篇
  2017年   3503篇
  2016年   3776篇
  2015年   4186篇
  2014年   6216篇
  2013年   6329篇
  2012年   7802篇
  2011年   8211篇
  2010年   6064篇
  2009年   6501篇
  2008年   6097篇
  2007年   7284篇
  2006年   6467篇
  2005年   5318篇
  2004年   4424篇
  2003年   3964篇
  2002年   3314篇
  2001年   2739篇
  2000年   2360篇
  1999年   1841篇
  1998年   1519篇
  1997年   1362篇
  1996年   1185篇
  1995年   1105篇
  1994年   929篇
  1993年   649篇
  1992年   587篇
  1991年   428篇
  1990年   388篇
  1989年   344篇
  1988年   201篇
  1987年   126篇
  1986年   90篇
  1985年   82篇
  1984年   74篇
  1983年   47篇
  1982年   58篇
  1981年   44篇
  1980年   44篇
  1979年   19篇
  1977年   12篇
  1965年   13篇
  1955年   11篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Powder transport systems are ubiquitous in various industries, where they can encounter single powder flow, two-phase flow with solids carried by gas or liquid, and gas–solid–liquid three-phase flow. System geometry, operating conditions, and particle properties have significant impacts on the flow behavior, making it difficult to achieve good transportation of granular materials. Compared to experimental trials and theoretical studies, the numerical approach provides unparalleled advantages over the investigation and prediction of detailed flow behavior, of which the discrete element method (DEM) can precisely capture complex particle-scale information and attract a plethora of research interests. This is the first study to review recent progress in the DEM and coupled DEM with computational fluid dynamics for extensive powder transport systems, including single-particle, gas–solid/solid–liquid, and gas–solid–liquid flows. Some important aspects (i.e., powder electrification during pneumatic conveying, pipe bend erosion, non-spherical particle transport) that have not been well summarized previously are given special attention, as is the application in some new-rising fields (ocean mining, hydraulic fracturing, and gas/oil production). Studies involving important large-scale computation methods, such as the coarse grained DEM, graphical processing unit-based technique, and periodic boundary condition, are also introduced to provide insight for industrial application. This review study conducts a comprehensive survey of the DEM studies in powder transport systems.  相似文献   
2.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
3.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
4.
5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。  相似文献   
5.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
6.
《工程爆破》2022,(3):10-13
石油射孔弹顺序起爆后,弹间冲击波相互作用是一个高度非线性的力学过程。基于有限元法对这一过程进行显式动力分析,由计算结果得知,高孔密射孔枪弹间干扰产生的主要原因是下位弹在不对称的压力场起爆。设计的不同孔密和不同爆速的导爆索两种情形的爆轰试验结果表明,弹间间距越小(即孔密的增加),弹间干扰越严重;随着导爆索爆速的降低,下位弹射流头部质量集中的"中间"偏转角度增大,上位弹对其干扰越明显。以上结论可用于高孔密射孔枪的优化设计。  相似文献   
7.
Recovery of hydrogen (H2) from H2-containing gas mixtures has great significance for energy conservation, cost reduction and benefit increase. However, the common separation methods have the ubiquitous problem due to phase equilibrium principle and results in the conflict between H2 concentration and H2 recovery rate in the product gas. Consequently, an innovative conception of hydrate-membrane coupling approach is proposed in this work. In the separation process, hydration and membrane permeation two separation driving forces coexist to achieve the aim of strengthening mass transfer kinetics. H2 and non-H2 components (hydrocarbons) are synchronously and directionally selected by membrane and hydrate to improve different phase compositions. Therefore, the gas in feed side could keep relatively high two separation driving forces (H2 fugacity and hydrocarbons fugacity). The results show that the coupling method could synchronously increase both the concentration and the recovery rate of H2 in the product gas. At the same time, the volume and concentration of the hydrocarbons in hydrate both increases effectively. It indicates that hydrate and membrane separation methods support each other in the separation process. The hydrate-membrane coupling method fundamentally solves the issue of the decreasing driving force resulting from single separation method and phase equilibrium relationship.  相似文献   
8.
《Journal of dairy science》2022,105(5):4314-4323
We tested the hypothesis that the size of a beef cattle population destined for use on dairy females is smaller under optimum-contribution selection (OCS) than under truncation selection (TRS) at the same genetic gain (ΔG) and the same rate of inbreeding (ΔF). We used stochastic simulation to estimate true ΔG realized at a 0.005 ΔF in breeding schemes with OCS or TRS. The schemes for the beef cattle population also differed in the number of purebred offspring per dam and the total number of purebred offspring per generation. Dams of the next generation were exclusively selected among the one-year-old heifers. All dams were donors for embryo transfer and produced a maximum of 5 or 10 offspring. The total number of purebred offspring per generation was: 400, 800, 1,600 or 4,000 calves, and it was used as a measure of population size. Rate of inbreeding was predicted and controlled using pedigree relationships. Each OCS (TRS) scheme was simulated for 10 discrete generations and replicated 100 (200) times. The OCS scheme and the TRS scheme with a maximum of 10 offspring per dam required approximately 783 and 1,257 purebred offspring per generation to realize a true ΔG of €14 and a ΔF of 0.005 per generation. Schemes with a maximum of 5 offspring per dam required more purebred offspring per generation to realize a similar true ΔG and a similar ΔF. Our results show that OCS and multiple ovulation and embryo transfer act on selection intensity through different mechanisms to achieve fewer selection candidates and fewer selected sires and dams than under TRS at the same ΔG and a fixed ΔF. Therefore, we advocate the use of a breeding scheme with OCS and multiple ovulation and embryo transfer for beef cattle destined for use on dairy females because it is favorable both from an economic perspective and a carbon footprint perspective.  相似文献   
9.
《Soils and Foundations》2022,62(3):101156
In this paper, a newly developed 3-dimentional discrete element model (DEM) for gravel-rubber mixtures (GRMs), namely DEM4GRM, that is capable of accurately describing the macro-scale shear response (from small to large deformation) of GRMs in a direct shear box apparatus is presented. Rigid gravel grains are modelled as simple multi-shape clumps, while soft rubber particles are modeled by using deformable 35-ball body-centered-cubic clusters. Mixtures are prepared with different volumetric rubber content (VRC) at 0, 10, 25, 40 and 100%, statically compressed under 30, 60 and 100 kPa vertical stress and then sheared, by closely simulating a reference laboratory test procedure. The variation of micro-scale factors such as fabric, normal and tangential force anisotropy is carefully examined throughout the shearing process and described by means of novel micro-mechanical relationships valid for GRMs. Moreover, strong-force chains are scrutinized to identify the transition from rigid to soft granular skeleton and gain insights on the load transfer and deformation mechanisms of GRMs. It is shown that the development of the fabric and force anisotropy during shearing is closely related to the macro-scale shear strength of GRMs, and strongly depends on the VRC. Besides, strong-force chains appear to be primarily formed by gravel-gravel contacts (resulting in a rigid-like mechanical behavior) up to VRC = 30%, and by rubber-rubber contacts (causing a soft-like mechanical response) beyond VRC = 60%. Alternatively, at 30% < VRC < 60%, gravel-rubber contacts are predominant in the strong-force network and an intermediate mechanical behavior is observed. This is consistent with the behavioral trends observed in the macro- and micro-mechanical responses.  相似文献   
10.
Revealing the active species of the catalyst is conducive to the design of more efficient catalyst. Herein, we tried to demonstrate the roles of amorphous and crystalline structures on CePO4 catalyst during selective catalytic reduction (SCR) of NOx by NH3. Higher calcination temperature promotes the transfer of amorphous structure to crystalline structure on the surface of CePO4. Both amorphous and crystalline CePO4 species on CePO-X samples can provide acid sites for NH3 adsorption, but the former can provide more acid sites. The superior redox property of surface amorphous CePO4 species contributes to its high NH3-SCR activity at low temperature, but it also leads to the decrease of high temperature (>350 °C) NH3-SCR activity due to the oxidation of NH3. In contrast, crystalline CePO4 species shows high activity only at high temperature because of its poor redox property. Therefore, it can be inferred that amorphous and crystalline structures on CePO4 catalyst can be the efficient active species of NH3-SCR at low and high temperature, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号