首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86479篇
  免费   9336篇
  国内免费   5592篇
电工技术   7377篇
技术理论   3篇
综合类   7573篇
化学工业   11761篇
金属工艺   5318篇
机械仪表   6086篇
建筑科学   7601篇
矿业工程   2580篇
能源动力   2674篇
轻工业   6959篇
水利工程   2202篇
石油天然气   3942篇
武器工业   1023篇
无线电   10350篇
一般工业技术   8322篇
冶金工业   3410篇
原子能技术   1111篇
自动化技术   13115篇
  2024年   178篇
  2023年   1214篇
  2022年   2406篇
  2021年   3344篇
  2020年   2611篇
  2019年   2058篇
  2018年   2445篇
  2017年   2654篇
  2016年   2431篇
  2015年   3511篇
  2014年   4639篇
  2013年   5114篇
  2012年   6198篇
  2011年   6410篇
  2010年   6016篇
  2009年   5906篇
  2008年   6029篇
  2007年   5557篇
  2006年   5404篇
  2005年   4381篇
  2004年   3452篇
  2003年   3365篇
  2002年   4052篇
  2001年   3418篇
  2000年   2136篇
  1999年   1526篇
  1998年   954篇
  1997年   819篇
  1996年   726篇
  1995年   577篇
  1994年   476篇
  1993年   318篇
  1992年   248篇
  1991年   211篇
  1990年   150篇
  1989年   121篇
  1988年   70篇
  1987年   64篇
  1986年   51篇
  1985年   19篇
  1984年   20篇
  1983年   13篇
  1982年   20篇
  1981年   21篇
  1980年   15篇
  1979年   16篇
  1978年   2篇
  1973年   2篇
  1959年   17篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 166 毫秒
1.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
2.
Alumina platelets were arranged horizontally in submicron alumina particles by shear force in the flow of slurries during casting. The obtained alumina green bodies with platelets were pressureless-sintered in vacuum, producing ceramics with thoroughly oriented grains and high transmittance. The effects of sintering parameters on the densification, microstructure evolution, and orientation degree of alumina ceramics were investigated and discussed. The results showed that the densification, grain size, orientation degree, and in-line transmittance were increased with increasing sintering temperature. The enhancement of orientation degree was mainly coherent with grain growth. The grain-oriented samples exhibited a much higher in-line transmittance (at 600 nm) of 61 % than that of the grain random sample (29 %). Moreover, the transmission remained a high level in the ultraviolet range (<300 nm).  相似文献   
3.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
4.
Glass-based materials are usually considered as excellent seals for jointing adjacent components in planar solid oxide fuel cells, but the uncontrollable crystallization in the glass may cause delamination and micro-cracks in such seals. To solve this problem, Al2O3 ceramic particles were added to a BaO–CaO–Al2O3–B2O3–SiO2 glass system to reduce negative effects caused by crystalline phase on the gas tightness and the joint strength in the seals. At an operating temperature of 750 °C, the glass-based seals with 20 wt% Al2O3 addition (GA80) exhibited extremely low leakage rates (~0.002 sccm/cm under an input gas pressure of 13.6 kPa) and higher shear strength (3.31 MPa). The Al2O3 ceramic addition and the crystalline phase BaAl2Si2O8 reinforced the glass matrix. Further thermal cycle analyses indicated that leakage rates for the GA80 seals remained at around 0.0025 sccm/cm after 10 thermal cycles, which was consistent with minor microstructural change and good interface bonding. Single cell testing with of GA80 seals was performed and the results demonstrated stable electrochemical performance through 6 thermal cycles at an open circuit voltage of 1.16–1.18 V, as well as a power density above 546 mW/cm2 at a current density of 925 mA/cm2. These results showed the high thermal cycle stability of the glass/Al2O3 composite seals in intermediate temperature planar solid oxide fuel cells.  相似文献   
5.
刘健  阙显阳 《建筑技术》2021,52(12):1491-1493
某高层住宅项目利用高层混凝土洗泵系统技术,解决了施工中涉及到的污染和施工安全问题,实现了绿色施工理念,达到了标准化管理的目的 .  相似文献   
6.
Developing non-platinum group metal (non-PGM) electrocatalysts for the hydrogen oxidation reaction (HOR) represents the efforts towards the more economical use of hydrogen fuel cells and hydrogen energy, which has attracted tremendous attention recently. However, non-PGM electrocatalysts for the HOR are still in their early development stages as compared with the significant advances in those for the oxygen reduction reaction and hydrogen evolution reaction. Herein, this paper summarizes the recent progresses and highlights the key challenges for the rational design of non-PGM electrocatalysts, aiming to promote the development of non-PGM HOR electrocatalysts. Fundamental understandings of the HOR mechanism are firstly reviewed, where theoretical interpretations on the low HOR kinetics in alkaline media, including the hydrogen binding energy theory, the bifunctional mechanism, and the water molecule reorganization, are particularly discussed. Subsequently, progresses of typical non-PGM HOR electrocatalysts in acid and alkaline media are summarized separately. For the HOR under alkaline conditions, the superiorities and challenges of Ni-based catalysts are discussed with a particular focus as they are the most promising non-PGM electrocatalysts. Finally, this paper highlights the challenges and provide perspectives on the future development directions of non-PGM HOR electrocatalysts.  相似文献   
7.
张拥军  王伟嘉  平炯军  何剑 《电气开关》2021,59(5):72-76,79
本文针对电力系统的变电站停送电操作过程中使用的传统开关柜小车操作手柄所遇到的问题进行了分析与研究,包括绝缘手套易黏连、摇柄易脱落等,并研制了一种开关柜小车"几"字型操作手柄.该手柄已在多处现场实践应用,效果良好,大大提升了运维操作的安全可靠性,提高了工作质量和效率,在保障电力系统安全稳定运行的同时,创造了丰厚的生产经济效益.  相似文献   
8.
9.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
10.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号