首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5413篇
  免费   67篇
  国内免费   49篇
电工技术   45篇
综合类   187篇
化学工业   675篇
金属工艺   293篇
机械仪表   130篇
建筑科学   1816篇
矿业工程   163篇
能源动力   122篇
轻工业   49篇
水利工程   273篇
石油天然气   49篇
武器工业   7篇
无线电   47篇
一般工业技术   673篇
冶金工业   771篇
原子能技术   90篇
自动化技术   139篇
  2024年   2篇
  2023年   27篇
  2022年   74篇
  2021年   48篇
  2020年   60篇
  2019年   34篇
  2018年   51篇
  2017年   74篇
  2016年   101篇
  2015年   117篇
  2014年   206篇
  2013年   214篇
  2012年   226篇
  2011年   438篇
  2010年   372篇
  2009年   370篇
  2008年   373篇
  2007年   364篇
  2006年   352篇
  2005年   331篇
  2004年   296篇
  2003年   292篇
  2002年   253篇
  2001年   156篇
  2000年   162篇
  1999年   156篇
  1998年   77篇
  1997年   57篇
  1996年   53篇
  1995年   28篇
  1994年   42篇
  1993年   31篇
  1992年   23篇
  1991年   16篇
  1990年   13篇
  1989年   10篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有5529条查询结果,搜索用时 15 毫秒
1.
In this study, the seismic behavior of a mechanically stabilized earth (MSE) wall with inclined backfill is investigated under sinusoidal acceleration excitations using a series of 1-g shaking table tests performed on the MSE model of 150 cm in height reinforced with polymeric geostrips. The effects of the stiffness of the reinforcement and slope angles of the backfill soil on the acceleration amplification factor (RMSA), the lateral displacement of the wall, the surface displacement of the backfill, the distribution of dynamic earth pressure along the height of reinforced wall and the strain distributions on the surfaces of the polymeric geostrips in three planes of the wall are investigated. The experimental results show that the dynamic earth pressure determined by traditional pseudo-static approaches leads to overestimated values. In addition, increasing the inclination angle of backfill soil results in the increase of surface settlement, lateral wall displacements, soil dynamic earth pressures, acceleration amplification factors and strains on the polymeric geostrip materials. The stiffness of the polymeric geostrip material has a negligible effect on the displacement, dynamic earth pressures and failure surface geometry.  相似文献   
2.
《Ceramics International》2021,47(20):28086-28105
Refractory castables develop microstructures after curing that behave as partially saturated porous media. Upon heating (during its drying stage), the steam generated by the physical and chemically bond water can result in pore pressurization and explosive spalling. Numerical modeling can provide guidelines for designing safer heat-up profiles and also a better understanding of the mechanisms that lead to catastrophic damage. This work aims to review the fundamentals and models available, providing insightful thoughts on the current trends of the drying phenomena of ceramic compositions. The review also highlights that there are models better oriented to result in reasonable predictions of pore pressure values and others focused on a more accurate representation of the main physical phenomena that take place during heating. According to the findings, there are still various challenges to attain accurate models with high applicability capable of yielding safer and more efficient drying of refractory castables.  相似文献   
3.
This paper focuses on the stochastic response of concrete bridges considering uncertainty in bearing and abutment stiffness. A multi-span simply supported bridge with concrete girders is selected. A 3D-dimensional model is prepared, and nonlinear response history analyses are performed. For the numerical dynamic simulation, the non-sampling stochastic method based on generalized polynomial chaos (gPC) expansion is utilised. The uncertain parameters include the vertical and shear stiffness of bearings and the lateral stiffness of abutments are presented by the truncated gPC expansions. Furthermore, the system response such as base shear, acceleration, velocity and displacement in different columns is presented by gPC expansion with unknown deterministic coefficients. The stochastic Galerkin projection is employed to calculate a set of deterministic equations. A non-intrusive solution, as a set of collocation points, determines the unknown gPC coefficients of the system response and the results are compared with Monte Carlo simulations. The key advantage of spectral discretization is the combination of the mentioned method with the spatial discretization, e.g. finite element model. This study also emphasises the accuracy in results and time efficiency of the proposed non-sampling method for uncertainty quantification of stochastic systems comparing to sampling procedure (e.g. Monte Carlo simulation).  相似文献   
4.
This study presents the results of full-scale tests and three-dimensional finite element analyses of deep cement mixing (DCM) and stiffened deep cement mixing (SDCM) columns under lateral loads and DCM and SDCM walls under deep excavation in soft clay. The DCM walls used in this study comprised one, two and three rows of DCM columns, whereas the SDCM walls consisted of only one row of DCM columns with steel H-beams inserted in either all DCM columns or in alternating DCM columns. The measured and simulated results are presented in terms of profiles of lateral displacement, settlement and bending moment.  相似文献   
5.
End milling has been widely adopted to machine the thin-plate parts that play increasingly important role in the aerospace industry, due to the advantages of high machining accuracy and fine machined surface quality. In this paper, a systematic method is proposed to predict and compensate the wall thickness errors in end milling of thin-plate parts. The errors are caused by the static deflections induced by the varying cutting force imposed on the weakly rigid part. To improve the efficiency of computing the part deformation, a novel FE model is firstly developed by combing the methods of substructure analysis, special mesh generation and structural static stiffness modification. Then, the time- and position-dependent deformations of the part are calculated based on the proposed FE model to predict the wall thickness errors left on the finished part. It reveals for the first time that the surface topography of the finished thin-plate part is formed by the repeated cutting with the bottom edge of the cutter (BEC) in end milling. Owing to the coupling between the axial cutting depth (ACD) and the force-induced deflection, the modified ACDs for compensation of the static wall thickness errors are finally determined by an iterative adjustment method. The proposed method is verified by three-axis end milling experiments. The experiment results show that the predicted wall thickness errors match well with the really measured ones, and the errors are reduced by 77.18% with the help of the proposed compensation method. Moreover, the proposed FE model reduces the computational time elapsed for error prediction by 67.44% as compared with the benchmark FE model.  相似文献   
6.
As concrete freezes and thaws cracks may develop. These cracks can provide a path for water and ionic species to penetrate the concrete. This may reduce the service-life of the concrete element. In this study, X-ray computed tomography (CT) was used as a non-destructive technique to characterize the microstructure of mortar samples that were exposed to different levels of freeze-thaw damage by varying degree of saturation in the samples (75, 90, 95, and 100% degrees of saturation). Acoustic emission (AE) experiments were performed during freezing and thawing to investigate sample cracking behavior. The volume of cracks present within the mortar samples after freezing and thawing were determined using X-ray CT and compared to passive acoustic emission data. The location/source of cracks was also determined using X-ray CT. The crack sources (i.e., void, aggregate, interfacial transition zone, or paste) were determined using X-ray CT and were related to AE activities during cracking. Crack volumes were found to increase with increased levels of saturation, and visual observations of cracking were found to correlate with AE signatures of various crack sources.  相似文献   
7.
本文根据当前环保政策以及混凝土市场环境分析混凝土企业生存现状,指出混凝土企业实施绿色生产的必要性,并阐述了绿色生产的具体环保措施,提出在新常态下混凝土企业发展未来。  相似文献   
8.
Different constituents of concrete can have cracking behavior that varies in terms of the acoustic waveform that is generated. Understanding the waveform may provide insight into the source and behavior of a crack that occurs in a cementitious composite. In this study, passive acoustic emission (AE) was used to investigate the waveform properties of the individual components of concrete (i.e., aggregate, paste, and interfacial transition zone (ITZ)). First, acoustic events produced by cracks generated using mechanical loading in a wedge splitting test were detected. It was observed that cracks that occurred through the aggregate have an AE frequency range between 300 kHz and 400 kHz, while cracks that propagated through the matrix (paste and ITZ) have a frequency range between 100 kHz and 300 kHz. Second, tests were performed using samples that were susceptible to alkali silica reaction; and AE and X-ray computed tomography were used to detect cracking. AE events with a frequency range between 300 kHz and 400 kHz were detected at early ages, suggesting the initiation of cracks within reactive aggregate. At later ages, AE events were detected with frequency ranges of 100–300 kHz, indicating crack development and propagation in the matrix.  相似文献   
9.
Construction and demolition waste (CDW) recycling is generally limited to the use of the coarser fraction as aggregate for new concrete. The recovery of fine aggregates requires a cleaning by removing the hydrated cement waste (HCW). In this paper, the possibility to use HCW extracted from CDW as alternative component for the production of new clinker is explored.A pure HCW sample was prepared and used in partial replacement of natural materials in raw admixtures for new clinker production. At a replacement degree of 30%, a new Portland clinker containing almost 50% of C3S could be produced with a huge spare in the release of CO2 (about 1/3 less). At higher HCW dosage a non-Portland clinker containing almost 80% of C2S has been obtained: its use as supplementary cementing material in blended cements revealed satisfying long term performances.  相似文献   
10.
Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete mixtures are tested 7, 14, and 28 days after casting. The development of degree of hydration is followed for 20 corresponding paste mixtures.Both when SAP is added with extra water to compensate the SAP water absorption in fresh concrete and without extra water, the internal curing water held by SAP may contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号