首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   6篇
金属工艺   1篇
建筑科学   2篇
轻工业   1篇
水利工程   1篇
一般工业技术   5篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
2.
This paper focuses on the stochastic response of concrete bridges considering uncertainty in bearing and abutment stiffness. A multi-span simply supported bridge with concrete girders is selected. A 3D-dimensional model is prepared, and nonlinear response history analyses are performed. For the numerical dynamic simulation, the non-sampling stochastic method based on generalized polynomial chaos (gPC) expansion is utilised. The uncertain parameters include the vertical and shear stiffness of bearings and the lateral stiffness of abutments are presented by the truncated gPC expansions. Furthermore, the system response such as base shear, acceleration, velocity and displacement in different columns is presented by gPC expansion with unknown deterministic coefficients. The stochastic Galerkin projection is employed to calculate a set of deterministic equations. A non-intrusive solution, as a set of collocation points, determines the unknown gPC coefficients of the system response and the results are compared with Monte Carlo simulations. The key advantage of spectral discretization is the combination of the mentioned method with the spatial discretization, e.g. finite element model. This study also emphasises the accuracy in results and time efficiency of the proposed non-sampling method for uncertainty quantification of stochastic systems comparing to sampling procedure (e.g. Monte Carlo simulation).  相似文献   
3.
This paper reports a novel processing route for producing AgO2/GrO nanocomposites by hydrothermal method. AgO2/GrO nanocomposites as semiconductor materials have been synthesized via a facile one-step process using AgNO3 and glucose as starting reagents. We investigated the influence of the thermal decomposition temperature and reaction time, on the morphology and the particle size of AgO2/GrO nanocomposites. The AgO2/GrO nanocomposites were characterized by FT-IR, UV–Vis spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The obtained results exhibited that the synthesized nano product by calcining for 4 h showed excellent uniformity and quality.  相似文献   
4.
MCM-48 nanoporous silica were prepared by the sol–gel method and functionalized by pyridine using a silane agent. With the aid of pyridines on the surface, the nanoporous material was used as a support for immobilization of metalloporphyrin. The formation of this material was confirmed by infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy analysis and specific surface area measurement. The application of this metalloporphyrin-immobilized MCM-48 was investigated as a heterogeneous catalyst in cyclohexene oxidation. Various parameters such as solvent and time were optimized. Also the effect of nanoporous structure on the efficiency of the catalyst was investigated by comparing the results with the same composite using nonporous silica (SiO2). The result showed that the MCM-48 immobilized metalloporphyrin is a better catalyst for cyclohexene oxidation, which can be attributed to its nanoporous structure. The nanoporous structure increases the surface area of MCM-48 and leads to more metalloporphyrin immobilization.  相似文献   
5.
6.
7.
The aim of this work is to evaluate performances of tannin-based resins designed as adhesive in the plywood production. For this purpose, a part of phenol formaldehyde (PF) and melamine formaldehyde (MF) in the classic adhesive formulation was replaced by tannin. The physical properties of the formulated resins (rheological characterization, etc.) were measured. In order to analyze the mechanical performance of tannin-based resins, plywood panels were produced and the mechanical properties including tensile strength wood failure and three-point bending strength were investigated. The performance of these panels is comparable to those of plywood panels made by commercial PF and MF. The results showed that the plywood panels bonded with tannin–PF (PFT) and tannin–MF (MFT) resins exhibited better mechanical properties in comparison to the plywood panels made of commercials PF and MF. The introduction of small properties of tannin in PF and MF resins contribute to the improvement of the water performance of these adhesives. The formaldehyde emission levels obtained from panels bonded with tannin-based resins were lower than those obtained from panels bonded with control PF and MF. Although there are no actual reaction at all between PF, MF, and tannin, addition of tannin significantly improves the water resistance of PF and MF resins. This is a novel finding that manifests the possibility of replacing a convention PF and MF resins by tannin. Modified adhesive is one of the goals in the plywood production without changing any of their production conditions with improvement to their overall properties.  相似文献   
8.
In this paper, barium hexaferrite (BaFe12O19) nanoparticles have been successfully synthesized via a simple co-precipitation route. Six chelating agents such as three amino acids (proline, alanine, aspartic acid) and three surfactants (SDBS, PVP, and EDTA) were used. The result showed that the amino acids decrease the particle size and the best result was observed for alanine. Besides, the photocatalyst activity of as-prepared BaFe12O19 nanoparticles was evaluated by degradation of methyl orange under visible light irradiation (λ?>?400 nm). The degradation rates of the methyl orange were measured to be as high as 95% in 200 min. The nanoparticles were also characterized by several techniques including FT-IR, XRD, SEM, and VSM. The VSM measurement showed a saturation magnetization value (Ms) of 30 emu/g.  相似文献   
9.
MCM-48 Nanoporous silica (Mobil Composition of Matter, #48) was synthesized and functionalized by pyridine groups. The formation of this functionalized nanoporous silica was confirmed by elemental analysis, low angle x-ray powder diffraction and N2 adsorption. The trinuclear oxo-centered Fe2Zn(μ3-O)(CF3COO)6(H2O)3 cluster was synthesized and immobilized inside the pyridine functionalized MCM-48 pores. The immobilization of this cluster was confirmed by IR spectroscopy and flame atomic adsorption spectroscopy. Fe2ZnO4 nanoparticles were confined within the nanoporous silica pores by thermolysis of the immobilized Fe2Zn(μ3-O)(CF3COO)6(H2O)3 cluster and were characterized by high angle X-ray powder diffraction and high resolution transmission electron microscopy. This method is suitable for the one-pot preparation of Fe2ZnO4 confined nanoporous silica.  相似文献   
10.
The Bakhtiary Hydropower Project with a 325 m high dam will be constructed on Bakhtiary River, in southwest Iran. The main dam has been designed as a double-curvature concrete structure which will be the highest one of its type in the world. Geologically, the dam site is located on siliceous limestone of the Sarvak Formation in the northwestern part of the folded Zagros. A large number of complicated geological structures in the study area, such as folding and duplex structure, faults, chevron folds, kink band zones as well as joint and fracture systems, raised concerns regarding the acceptability of the site for such a monumental dam. To create a comprehensive geotechnical model of the dam site and appurtenant structures, very extensive surface and subsurface investigations were carried out, including core drilling, water pressure testing, driving exploratory galleries for engineering geological mapping, a rock mass discontinuity survey and in situ rock mechanical tests. This research applies the results of the engineering geological and geotechnical investigations to define the geomechanical model of the dam site enabling options to be considered to achieve a safe dam design. The investigations show the rock mass of the dam site area is intersected by four main discontinuities namely, the bedding plane(s) of the rock mass and three major joint sets. Water pressure tests provide data about the permeability of the rock mass which is significantly dependant on the joint properties and the geological structures. These parameters, set the criteria for the design of the grout curtain at the dam foundation. The rock mass classification of the dam site was determined mainly based on the gallery survey and core logging using the rock mass rating, geological strength index (GSI) and Q system. Six classes of rock mass qualities were distinguished which show a fair to good rock mass at the dam foundation. From the plate load test results, a site-specific correlation was developed for estimating the modulus of deformation of the rock masses using GSI value. The estimated engineering geological and geotechnical parameters at the dam site are generally favorable and suitable for the safe design of the Bakhtiary arch dam with a height of 325 m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号