首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203096篇
  免费   14980篇
  国内免费   11916篇
电工技术   8178篇
技术理论   6篇
综合类   17147篇
化学工业   47100篇
金属工艺   16850篇
机械仪表   6410篇
建筑科学   7449篇
矿业工程   3351篇
能源动力   7648篇
轻工业   13156篇
水利工程   3063篇
石油天然气   9041篇
武器工业   1376篇
无线电   17161篇
一般工业技术   31181篇
冶金工业   8022篇
原子能技术   3648篇
自动化技术   29205篇
  2024年   215篇
  2023年   2215篇
  2022年   2579篇
  2021年   4709篇
  2020年   4431篇
  2019年   4201篇
  2018年   3996篇
  2017年   4575篇
  2016年   5441篇
  2015年   6051篇
  2014年   9513篇
  2013年   11298篇
  2012年   11615篇
  2011年   14099篇
  2010年   11179篇
  2009年   13575篇
  2008年   12454篇
  2007年   14010篇
  2006年   12796篇
  2005年   10424篇
  2004年   8862篇
  2003年   8032篇
  2002年   7220篇
  2001年   5530篇
  2000年   5539篇
  1999年   4814篇
  1998年   3937篇
  1997年   3513篇
  1996年   3610篇
  1995年   3625篇
  1994年   3322篇
  1993年   2162篇
  1992年   2033篇
  1991年   1472篇
  1990年   1135篇
  1989年   962篇
  1988年   822篇
  1987年   494篇
  1986年   327篇
  1985年   450篇
  1984年   481篇
  1983年   472篇
  1982年   392篇
  1981年   449篇
  1980年   309篇
  1979年   151篇
  1978年   123篇
  1977年   83篇
  1976年   53篇
  1975年   70篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
3.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
4.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
5.
RE disilicates are good candidates as environmental/thermal barrier coating for SiCf/SiC composite in harsh gas turbine engines. We designed (Yb1?xHox)2Si2O7 solid solutions and studied mechanical properties, thermal properties, and water vapor resistance. Powders with different compositions were synthesized by pressureless sintering, and bulk samples were prepared by Spark Plasma Sintering (SPS). Polymorphic changes with temperature and composition of the solid solutions were examined. Through doping Ho into Yb2Si2O7, water vapor corrosion resistance is significantly promoted, and thermal expansion coefficient is maintained close to that of Si-based ceramics. Compared with host disilicates, thermal conductivity of solid solutions are decreased, and mechanical properties, including Vickers hardness and fracture toughness, are increased. A two-phase domain is found at (Yb1/2Ho1/2)2Si2O7, and the γ to δ phase transition of Ho2Si2O7 is observed during SPS. Among all samples, γ-(Yb1/3Ho2/3)2Si2O7 possesses superior high temperature stability, and excellent water vapor resistance, indicating its performance as environmental/thermal barrier coating.  相似文献   
6.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
7.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
8.
研究了3种微通道板基底羟基化的方法,测量了羟基化处理后微通道板基底表面水接触角及通道端面的形貌变化,分析了各种方法中微通道板基底的亲水性和腐蚀情况。实验结果表明:氨水双氧水溶液对基体表面的亲水性能提升不大,NaOH溶液对基体有腐蚀作用,经食人鱼溶液处理的基体表面亲水性明显提高且无腐蚀作用。研究了微通道板在食人鱼溶液中的浸泡时间和浸泡温度对表面亲水性的影响。结果表明:随着浸泡温度的增加,微通道板表面水接触角先减小后增大,当温度为80℃时达到极小值,浸泡时间对微通道板表面的亲水性影响不大。最终确定了微通道板表面羟基化工艺:浸泡温度为80℃,静置时间为20~60 min。  相似文献   
9.
10.
In this article, the memory-based dynamic event-triggered controller design issue is investigated for networked interval type-2 (IT2) fuzzy systems under non-periodic denial-of-service (DoS) attacks. For saving limited network bandwidth, a novel memory-based dynamic event-triggered mechanism (DETM) is proposed to schedule data communication. Unlike existing event-triggered generators, the developed memory-based DETM can utilize a series of newly released signals and further save network resources by introducing interval dynamic variables. Moreover, to improve design flexibility, an IT2 fuzzy controller with freely selectable fuzzy rule number and premise membership functions (MFs) is synthesized. Then, a new switched time-delay system with imperfectly matched MFs is established under the consideration of memory-based DETM and DoS attacks simultaneously. Besides, based on the property of MFs, the boundary information of membership grades and slack matrices are introduced in the stability analysis. Furthermore, by using a piecewise Lyapunov–Krasovskii method, membership-functions-dependent criteria are deduced to ensure the asymptotic stability of built fuzzy switched systems. Finally, the effectiveness of proposed control strategies is demonstrated by simulation examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号