首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10171篇
  免费   869篇
  国内免费   467篇
电工技术   206篇
综合类   682篇
化学工业   1177篇
金属工艺   777篇
机械仪表   1346篇
建筑科学   557篇
矿业工程   142篇
能源动力   310篇
轻工业   1112篇
水利工程   180篇
石油天然气   1344篇
武器工业   62篇
无线电   1147篇
一般工业技术   1037篇
冶金工业   500篇
原子能技术   184篇
自动化技术   744篇
  2024年   23篇
  2023年   110篇
  2022年   201篇
  2021年   284篇
  2020年   260篇
  2019年   294篇
  2018年   227篇
  2017年   308篇
  2016年   367篇
  2015年   349篇
  2014年   514篇
  2013年   628篇
  2012年   675篇
  2011年   768篇
  2010年   540篇
  2009年   579篇
  2008年   513篇
  2007年   699篇
  2006年   620篇
  2005年   570篇
  2004年   527篇
  2003年   462篇
  2002年   369篇
  2001年   289篇
  2000年   258篇
  1999年   187篇
  1998年   168篇
  1997年   122篇
  1996年   104篇
  1995年   98篇
  1994年   73篇
  1993年   78篇
  1992年   40篇
  1991年   33篇
  1990年   48篇
  1989年   23篇
  1988年   22篇
  1987年   11篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   11篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1965年   2篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33106-33119
K9 optical glass is one of the typical components in optical systems. However, because of its poor fracture resistance, it is difficult to polish it with ultra-precision and high-efficiency and without any surface damage simultaneously. The emergence of the obliquely axial ultrasonic vibration-assisted polishing (UVAP) method can solve this problem which encounters in polishing efficiency and shape accuracy. However, due to the unclear material removal profile (MRP) mechanism, obliquely axial UVAP is not widely used in the processing field. This paper introduces the obliquely axial UVAP method in research processes, mainly focusing on the fixed point MRP analysis of the obliquely axial UVAP. Based on Hertz's contact theory, polishing pressure, the length of the semi-long axis (LLA) and the length of the semi-short axis (LSA) of the contact area are calculated under ultrasonic vibration conditions. Meanwhile, the relative linear velocity distribution of the oblique polishing tool in the instantaneous contact area is modeled by mathematical geometry method. A novel model of the MRP distribution for obliquely axial UVAP is proposed following the Preston equation. Subsequently, a series of polishing experiments were carried out to verify this model. The results show that the numerical model has good agreement with the experimental results on MRP, LLA, LSA, material removal depth and material removal rate (MRR). In addition, the material removal capability can be significantly improved by larger ultrasonic amplitude and larger oblique angle. This model not only more clearly elucidates the processing mechanism of obliquely axial UVAP, but also provides theoretical support for the polishing of free-form optical lenses.  相似文献   
2.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
3.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   
4.
This paper presents an approach to modify CAD/CAM generated motion profiles for wire bending machines, in order to damp wire oscillations without decreasing machine throughput. Two different methodologies are presented, both leveraging on a simple and easily identifiable model of wire oscillations, the first one based on a filtering approach, the second one on an optimisation approach. The two methodologies are both characterised by a low computational complexity, allowing them to be integrated directly in the bending machine user interface, and can rely on a standard camera to identify wire oscillation parameters. A thorough experimental validation of the approaches is also presented, showing promising results in damping oscillations with wires of different materials.  相似文献   
5.
At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being studied by many to tackle the issue of the declining productivity of traditional construction methods. Although many studies have been done, most of the current 3D printing projects are facing limitations in terms of scale. In order to bridge the gap, this article proposed a mass customization 3D printing framework system for large-scale projects. This article discusses how mass customization is made possible through the joint operation of the FUROBOT software and 3D printing hardware. By taking the east gate of Nanjing Happy Valley Plaza as a case study, the article demonstrates and studies the feasibility of the large-scale mass customization 3D printing framework system.  相似文献   
6.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
7.
8.
Photothermal-chemotherapeutic nanoparticles (NPs) are attracting increasing attention and becoming more widely used for cancer therapy in the clinic due to their noninvasiveness, notable tissue penetration abilities, and low systemic adverse effects. However, functional ligands are conventionally modified onto photothermal NPs to well stabilize the inorganic particles suffering from complex chemical modifications, low productivity, and batch-to-batch inconsistencies, and thus significantly restricting their clinical applications. Herein, flash nanoprecipitation (FNP) is taken advantage of to afford rapid and uniform mixing for generating local supersaturated CuS clusters for small and highly stable CuS NPs effectively stabilized by polyacrylic acid through a continuous strategy. It greatly reduces the complexity for CuS NPs synthesis and functionalization in a facile intensified mixing process. These as-synthesized particles are high-drug loading, scalable, and most importantly, it is easy to control their sizes and charges through external conditions. Toxicity and tumor inhibition experiments confirm the high cell toxicity and good suppression of tumor growth under near-infrared irradiation indicating a promising prospect of FNP in the large-scale and continuous yielding of highly stable and high-performing photothermal-chemotherapeutic NPs for cancer therapy.  相似文献   
9.
10.
原子力显微镜(AFM)是获取金刚石刀具刃口纳米级三维形貌的重要手段,但其存在测量范围小,难以表征参与切削区域整段刃口形貌特征的问题。采用基于迭代最近点法的刃口AFM测量数据拼接算法,获得了由多组数据拼接得到的刃口纳米级三维形貌,并进行了切削实验验证。实验结果表明,采用的数据拼接方法可较好地用于表征刀具刃口三维形貌。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号