首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9944篇
  免费   1016篇
  国内免费   696篇
电工技术   320篇
技术理论   8篇
综合类   616篇
化学工业   1737篇
金属工艺   250篇
机械仪表   207篇
建筑科学   809篇
矿业工程   374篇
能源动力   778篇
轻工业   324篇
水利工程   799篇
石油天然气   172篇
武器工业   28篇
无线电   1688篇
一般工业技术   1882篇
冶金工业   366篇
原子能技术   492篇
自动化技术   806篇
  2024年   13篇
  2023年   185篇
  2022年   207篇
  2021年   428篇
  2020年   366篇
  2019年   322篇
  2018年   296篇
  2017年   399篇
  2016年   413篇
  2015年   344篇
  2014年   611篇
  2013年   820篇
  2012年   597篇
  2011年   720篇
  2010年   560篇
  2009年   604篇
  2008年   554篇
  2007年   561篇
  2006年   523篇
  2005年   414篇
  2004年   399篇
  2003年   323篇
  2002年   325篇
  2001年   264篇
  2000年   205篇
  1999年   136篇
  1998年   136篇
  1997年   146篇
  1996年   93篇
  1995年   95篇
  1994年   103篇
  1993年   72篇
  1992年   59篇
  1991年   50篇
  1990年   36篇
  1989年   70篇
  1988年   40篇
  1987年   21篇
  1986年   23篇
  1985年   24篇
  1984年   17篇
  1983年   15篇
  1982年   19篇
  1981年   19篇
  1980年   9篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1959年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
3.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   
4.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
5.
本文分析了乌兰矿投产前期采矿现状及存在的主要问题,针对该矿所处蒙古国经济落后、投资风险大的现实状况,为避免生产中断、规避投资风险,早日回收前期投资考虑,采取了双斜坡道开拓、全尾胶结充填、高端壁空场嗣后充填采矿、多中段组合式连续开采等系列技术应对方案。大大降低了一次性投资规模及投资风险,前期投资得以快速回笼的同时,矿山产能也充分释放,确保了矿山的持续稳定,取得了较好的经济和社会效益。为海外地下近地表矿体开采矿山规避投资风险提供了很好的技术方案借鉴。  相似文献   
6.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
7.
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.  相似文献   
8.
马中立 《现代矿业》2020,36(11):172-174
针对某在建矿山深井开拓方案探索需求,通过对胶带运输系统发展应用情况介绍和胶带运输系统运输特性影响因素分析,并结合深井开拓胶带斜井方案与竖井加胶带斜井方案投资经济性比较,以及对胶带运输系统在运行过程中关键问题的分析和讨论,得出随着胶带运输技术的不断发展,在大规模深井开拓中,胶带斜井开拓将大有可为,为冶金矿山深井开拓方案选择提供决策支持。  相似文献   
9.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
10.
Hyperbolic phonon polaritons (HPhPs) in orthorhombic-phase molybdenum trioxide (α-MoO3) show in-plane hyperbolicity, great wavelength compression, and ultralong lifetime, therefore holding great potential in nanophotonic applications. However, its polaritonic response in the far-infrared (FIR) range remains unexplored due to challenges in experimental characterization. Here, monochromated electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is used to probe HPhPs in α-MoO3 in both mid-infrared (MIR) and FIR frequencies and correlate their behaviors with microstructures and orientations. It is found that low structural symmetry leads to various phonon modes and multiple Reststrahlen bands (RBs) over a broad spectral range (over 70 meV) and in different directions (55–63 meV and 119–125 meV along the b-axis, 68–106 meV along the c-axis, and 101–121 meV along the a-axis). These HPhPs can be selectively excited by controlling the direction of swift electrons. These findings provide new opportunities in nanophotonic and optoelectronic applications, such as directed light propagation, hyperlenses, and heat transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号