首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   80篇
  国内免费   256篇
电工技术   42篇
综合类   30篇
化学工业   583篇
金属工艺   1313篇
机械仪表   6篇
建筑科学   12篇
矿业工程   4篇
能源动力   144篇
轻工业   1篇
水利工程   2篇
石油天然气   25篇
无线电   15篇
一般工业技术   140篇
冶金工业   22篇
原子能技术   1篇
自动化技术   48篇
  2024年   2篇
  2023年   8篇
  2022年   24篇
  2021年   31篇
  2020年   33篇
  2019年   56篇
  2018年   56篇
  2017年   52篇
  2016年   44篇
  2015年   63篇
  2014年   130篇
  2013年   164篇
  2012年   103篇
  2011年   289篇
  2010年   219篇
  2009年   250篇
  2008年   177篇
  2007年   185篇
  2006年   129篇
  2005年   90篇
  2004年   84篇
  2003年   61篇
  2002年   56篇
  2001年   18篇
  2000年   25篇
  1999年   7篇
  1998年   14篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有2388条查询结果,搜索用时 20 毫秒
1.
Significant efforts have been made to develop highly active non-noble metal-based, affordable metallic and stable electro-catalysts for hydrogen evolution reaction (HER). Strong acid and bases are now used in HER operations to achieve large-scale, sustained H2 fuel production. However, few studies have utilized phosphate-buffered neutral electrolytes (PBS) in the field of neutral electrolyte technology. In this work, a certain alloys with a Ni–Cr basis have been produced as favorable components for the HER under neutral conditions. Additionally, the current investigations are emphasizing on the concentration of buffer phosphate species in the HER activity of various materials. By employing polarization and electrochemical impedance spectroscopy (EIS) in neutral solutions, the electro-catalytic activity of new alloys on HER was evaluated. According to the preliminary findings, the examined Ni–Cr-based alloys show superior HER catalytic activity in neutral electrolytes. Additionally, the Ni–Cr alloy matrix with Fe and Mo added enhances HER electrocatalytic efficiency while lowering interfacial charge transfer resistance. Due to its low overpotential of ?297 mV @ 10 mA cm?2 and Tafel slope of 94 mV dec?1 in 1.0 M PBS media, the Ni–Cr–Mo–Fe alloy exhibits an efficient HER, suggesting that the Ni–Cr–Mo–Fe electrode will be a potential noble metal-free electro-catalyst for HER. The Ni–Cr–Mo–Fe cathode is a readily available and affordable material for the production of HER in neutral medium.  相似文献   
2.
The synergistic interactions and corrosion protection properties of 2-amino 4-methyl benzothiazole, (AMBT) and 1, 2, 3-benzotriazole (BTZ) have been studied for mild steel in HCl at elevated temperatures. The extent of synergistic interaction increases with temperature. The methods of study include the conventional weight loss studies, computational screening, surface characterization and electrochemical studies. Quantum chemical approach was used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to parameters like total energy, EHOMO, ELUMO and gap energy (ΔE). Condensed atom Fukui functions also calculated using DFT at B3LYP/6-31G* level, and were found to be correlating with the experimental results.  相似文献   
3.
4.
Plasma electrolytic oxidation (PEO) coatings were produced on AZ80 magnesium alloy in a solution containing silicates and phosphates and working at high current densities with short treatment times. The effect of a sealing treatment in boiling water on corrosion and mechanical properties of the coatings were investigated. Moreover, the corrosion mechanism of the samples with and without the sealing treatment was evaluated. The microstructure of the coatings was characterized with scanning electron microscope observation and X‐ray diffraction analysis. The mechanical properties were evaluated with nanoindentation tests and the corrosion resistance was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning vibrating electrode technique. The results showed that the sealing did not influence the microstructure and the mechanical properties of the samples and instead produced a remarkable increase in the corrosion resistance. The crevice corrosion, present in the sample without the sealing, was avoided with the treatment in boiling water.  相似文献   
5.
In situ real-time imaging and electrochemical impedance spectroscopy (EIS) measurements were performed on pure aluminium, aluminium-copper and copper electrodes, with the aim to elucidate the relationship between the shape of EIS spectra and the local processes occurring on the surface of corroding aluminium, with particular attention to the appearance of inductive behaviour. When a stable oxide was present on the aluminium surface, the impedance modulus increased with decreasing frequencies, indicating the absence of inductive behaviour. Conversely, the presence of depassivating condition coupled with the availability of some anodic current, generated localized corrosion and associated hydrogen evolution at the corrosion front (also known as superfluous hydrogen evolution). In these conditions, a clear inductive behaviour was observed, regardless on the source of the anodic current at the corrosion front, i.e. galvanic coupling or external anodic polarization.  相似文献   
6.
通过熔铸、压延、退火等一系列工艺制作了新型Al-0.017Ga-0.885Mn-0.038Ca-0.048Cu (wt.%)阳极合金,并通过了EIS、极化曲线分析研究了其在不同浓度NaOH溶液中的腐蚀行为和电化学性能。结果表明,随着NaOH浓度的增加,合金阳极的自腐蚀速率在逐渐增加,Al-0.017Ga-0.885Mn-0.038Ca-0.048Cu合金在4mol/LNaOH溶液中的腐蚀速率增长速度明显降低,放电电压在电流密度为120mA/cm2下仍能维持在1 V左右,阳极能量密度也最高,达6.056kW?h/kg,更适合不同电流密度下的连续恒流放电。且合金的恒流放电和EIS结果与腐蚀特性吻合较好。  相似文献   
7.
The paper analyses the corrosion behaviour of naturally and artificially aged AA2024 alloy in NaCl solution and in the presence of an environment-friendly corrosion inhibitor, CeCl3. On the basis of the values of polarisation resistance and corrosion current density, the corrosion resistance of the protective inhibitor film is established as well as the general corrosion resistance of this aluminium alloy. Resistance to pit formation is determined based on the difference in pitting and corrosion potentials while resistance to pit growth is determined based on the amount of charge consumed during pit growth. A scanning electron microscope is used to examine the morphology of the pits formed during the pitting corrosion testing, as well as to determine the cerium content on intermetallic particles and the matrix AA2024 alloy. The corrosion behaviour of AA2024 alloy is investigated after different test periods in NaCl solution and in the same solution with the CeCl3 inhibitor. The corrosion resistance of both tempers of AA2024 alloy is more than one order of magnitude higher in the presence of CeCl3. An explanation of the observed differences in the corrosion behaviour of the naturally and artificially aged AA2024 alloy is proposed. Different corrosion behaviour of the alloy after different test periods is also explained.  相似文献   
8.
The synergistic effect of bark resin of Schinus molle (BRSM) and iodide ions in 0.5 M sulfuric acid has been studied for the first time by potentiodynamic polarization and electrochemical impedance spectroscopy measurements; also, the surface morphology has been analyzed by scanning electron microscopy–energy-dispersive X-ray spectroscopic analysis in the present work. The results show that the BRSM and iodide ions have an evident synergistic inhibition effect in a 0.5-M sulfuric acid solution. The adsorption of the BRSM/iodide ion system follows the Langmuir adsorption isotherm and acts as a mixed-type inhibitor in sulfuric acid. The BRSM/iodide ion system is an effective inhibitor for API5L X70 pipeline steel in the 0.5-M sulfuric acid solution. The maximum percentage inhibition efficiency is equal to 99% at 1 g/L BRSM + 2 mM KI.  相似文献   
9.
In this paper, we have studied the impact of postannealing treatment on the structural properties and sensing characteristics of CeTiO3 ceramic membranes deposited on Si substrate by sputtering for solid-state electrolyte-insulator-semiconductor (EIS) pH sensors. X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and atomic force microscopy were used to study the chemical compositions, elemental depth profiles, film structures, and surface morphologies of CeTiO3 ceramic membranes treated at three rapid thermal annealing (RTA) temperatures of 700, 800 and 900?°C. The sensing performance of the CeTiO3 ceramic membranes annealed at three different RTA temperatures is strongly correlated to their structural properties. The CeTiO3 EIS device after RTA at 800?°C exhibited the best sensing characteristics (pH sensitivity, hysteresis voltage and drift rate) among these RTA temperatures. We attribute this behavior to the optimal RTA temperature enhancing the Ce3+/Ce4+ ratio of CeTiO3 ceramic membrane, reducing an interfacial layer at the CeTiO3-Si interface, and increasing its surface roughness.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号