首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16579篇
  免费   1645篇
  国内免费   1177篇
电工技术   184篇
技术理论   2篇
综合类   1193篇
化学工业   6725篇
金属工艺   716篇
机械仪表   494篇
建筑科学   2213篇
矿业工程   326篇
能源动力   677篇
轻工业   869篇
水利工程   234篇
石油天然气   274篇
武器工业   1124篇
无线电   604篇
一般工业技术   1449篇
冶金工业   451篇
原子能技术   162篇
自动化技术   1704篇
  2024年   13篇
  2023年   263篇
  2022年   287篇
  2021年   420篇
  2020年   447篇
  2019年   453篇
  2018年   425篇
  2017年   468篇
  2016年   534篇
  2015年   732篇
  2014年   1282篇
  2013年   1174篇
  2012年   1328篇
  2011年   1508篇
  2010年   1263篇
  2009年   1279篇
  2008年   1073篇
  2007年   1160篇
  2006年   1074篇
  2005年   845篇
  2004年   713篇
  2003年   577篇
  2002年   424篇
  2001年   325篇
  2000年   257篇
  1999年   213篇
  1998年   115篇
  1997年   117篇
  1996年   91篇
  1995年   74篇
  1994年   56篇
  1993年   57篇
  1992年   79篇
  1991年   43篇
  1990年   32篇
  1989年   43篇
  1988年   17篇
  1987年   19篇
  1986年   18篇
  1985年   11篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1975年   5篇
  1965年   5篇
  1964年   7篇
  1961年   7篇
  1960年   5篇
  1956年   5篇
  1955年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
2.
以“创新、协调、绿色、开放、共享”为内核的新发展理念,是对马克思主义发展理念的继承和发扬,极具时代精神,富含问题意识,为高校思想政治教育发展、教育教学改革实践提供了强大的理论支撑。本文以“通信原理”为例,阐述了新发展理念在课程改革中的思路和方法,实现了思想政治教育与专业基础课程有机融合,为深化高校教学改革、创新人才培养模式提供了思路。  相似文献   
3.
Eco-friendly quantum dots (QDs) can be termed green QDs which stand as an attractive choice to modify the properties of known semiconductors in the direction of getting efficient photoelectrodes for solar-induced photoelectrochemical (PEC) splitting of water, due to their peculiar properties. Thus, it is of high significance to analyze their merit/demerit as an effective scaffold in PEC cell. QDs are known for their excellent optical properties however, the coupling of green QDs with semiconductor is not only useful in improving absorption characteristics but also promotes charge transfer. This review has undertaken the critical analysis on the worldwide research going on the green QDs modified photoelectrode with respect to their optical, electrical & photoelectrochemical properties, role, usefulness, efficiency, and finally the success in PEC system for hydrogen production. Various methods on the facile synthesis & sensitization techniques of green QDs available in the literature have also been discussed. Further, recent advances on the development of green QDs based photo-electrode, along with major challenges of using green QDs in this field have also been presented.  相似文献   
4.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   
5.
Interspecific interactions among walleye Sander vitreus, lake whitefish Coregonus clupeaformis, and yellow perch Perca flavescens in Green Bay could influence the population status of each species, but potential trophic interactions are poorly understood. Our objectives were to determine if diet assemblages for each species and diet overlap among species varied spatially and temporally within Green Bay. Adult walleye (≥381 mm total length (TL); N = 981), lake whitefish (≥432 mm TL; N = 1507), and yellow perch (≥150 mm TL; N = 1174) were collected during May-October of 2018 and 2019 from multiple locations in southern and northern Green Bay. Diet assemblages of each species varied between northern and southern Green Bay, but walleye diets were more temporally variable (among months within zones and between years) than diets of lake whitefish or yellow perch. Lake whitefish represented a seasonally important prey item for walleye in southern Green Bay, composing 10 % and 41 % of walleye diets by weight in May and June, respectively. Yellow perch generally composed <15 % of walleye diets by weight but were consumed at a broader spatiotemporal scale than lake whitefish. Diet overlap between walleye and both lake whitefish and yellow perch was generally weak or moderate, whereas diet overlap between whitefish and perch was generally strong. Our assessment of adult trophic interactions suggests that changes in the population status of one species could influence fisheries for all three, and we identify additional research questions to address potential population-level effects of these trophic interactions.  相似文献   
6.
The performance of gallium promoted cobalt-ceria catalysts for ethanol steam reforming (ESR) was studied using H2O/C2H5OH = 6/1 mol/mol at 500 °C. The catalysts were synthetized via cerium-gallium co-precipitation and wetness impregnation of cobalt. A detailed characterization by N2-physisorption, XRD, H2-TPR and TEM allowed the normalization of contact time and rationalization of the role of each catalysts component for ESR. The gallium promoted catalyst, Co/Ce90Ga10Ox, was more efficient for the ethanol conversion to H2 and CO2, and the production of oxygenated by-products (such as, acetaldehyde and acetone) than Co/CeO2. The catalytic performance is explained assuming that: (i) bare ceria is able to dehydrogenate ethanol to ethylene; (ii) Ce–O–Ga interface catalyzes ethanol reforming; (iii) both Ce–O–Co and Ce–O–Ga interfaces takes part in acetone production; and (iv) cobalt sites further allow C–C scission. It is suggested that a cooperative role between Co and Ce–O–Ga sites enhance the H2 and CO2 yields under ESR conditions.  相似文献   
7.
Water electrolysis technologies aim to provide a significant increase in green hydrogen production efficiency. In this work, a framework was developed to explore the use of supercritical water for alkaline electrolysis. This framework was used to perform Arrhenius analysis as a function of potential, and to explore activation energies for sub- and supercritical water electrolysis. An analysis of the conductivity of solution unveiled a discontinuity in the trends between sub- and supercritical potassium hydroxide solution conductivity. Unlike prior work on supercritical water electrolysis, this work investigates trends in electrochemical parameters, the sources of these trends, and how they change between the sub- and supercritical regimes.  相似文献   
8.
This study was conducted to estimate the potential for green H2 in Paraguay. A total production potential of 22.5 × 106 tons/year was obtained with a main contribution (93.34%) from solar photovoltaic. The greatest potential for producing H2 from solar and wind resources is in the Western region, and from hydro resources is in the Eastern region of the country. Two end-uses of green H2 were assessed: (1) automotive transportation, replacing gasoline and diesel; and (2) residential energy, replacing firewood and LPG for cooking in households across the country. In 16 of the 17 departments, green H2 is able to replace the overall consumption of gasoline and diesel, as well as firewood and LPG. Finally, energy service cost (mobility), environmental aspects and CO2 emissions were considered for three urban mobility technologies for the Metropolitan Area of Asunción. Results show that the mobility cost of fuel cell hybrid electric buses is still very high in comparison to diesel buses and battery electric buses. However, when a longer driving range is required, fuel cell hybrid electric buses could become a viable alternative in the long term. From an environmental point of view, green H2 used in fuel cell hybrid electric buses has the potential to save about 96% of CO2 emissions in comparison to diesel buses. It is concluded that the estimated green H2 production potential favors the incorporation of the Hydrogen Economy in Paraguay.  相似文献   
9.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   
10.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号