首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   31篇
  国内免费   27篇
综合类   2篇
化学工业   177篇
金属工艺   32篇
机械仪表   5篇
建筑科学   15篇
轻工业   16篇
水利工程   1篇
无线电   62篇
一般工业技术   84篇
冶金工业   28篇
原子能技术   2篇
自动化技术   8篇
  2025年   3篇
  2024年   19篇
  2023年   19篇
  2022年   55篇
  2021年   71篇
  2020年   33篇
  2019年   24篇
  2018年   26篇
  2017年   17篇
  2016年   16篇
  2015年   19篇
  2014年   21篇
  2013年   20篇
  2012年   6篇
  2011年   34篇
  2010年   9篇
  2009年   3篇
  2008年   11篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1988年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
1.
目的:应用艾易舒注射液治疗乳腺癌术后患者并观察其临床疗效。方法:选择我院确诊为乳腺癌术后患者62例,随机分为治疗组(33例)和对照组(29例),治疗组应用艾易舒注射液50ml加入生理盐水250ml静脉点滴及常规化疗,对照组仅给予常规化疗,3个周期后比较两组CA153值、TSGF的变化及近期疗效、不良反应等指标的差异性。结果:治疗组CAl53及TSGF数值治疗后下降显著,阳性例数远远低于对照组;两组的近期疗效无显著差异,但治疗组的不良反应明显低于对照组。结论:艾易舒注射液在一定程度上可以预防转移和复发,具有抗癌作用。  相似文献   
2.
Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug's ability to silence expression suppresses the growth of cholangiocarcinoma cells and/or sensitizes cholangiocarcinoma cells to chemotherapeutic agents through induction of apoptosis. We targeted the Slug gene using siRNA (Slug siRNA) via full Slug cDNA plasmid (Slug cDNA) transfection of cholangiocarcinoma cells. Slug siRNA, cisplatin, or Slug siRNA in combination with cisplatin, were used to treat cholangiocarcinoma cells in vitro. Western blot was used to detect the expression of Slug, PUMA, and E-cadherin protein. TUNEL, Annexin V Staining, and cell cycle analysis were used to detect apoptosis. A nude mice subcutaneous xenograft model of QBC939 cells was used to assess the effect of Slug silencing and/or cisplatin on tumor growth. Immunohistochemical staining was used to analyze the expression of Slug and PUMA. TUNEL was used to detect apoptosis in vivo. The results showed that PUMA and E-cadherin expression in cholangiocarcinoma cells is Slug dependent. We demonstrated that Slug silencing and cisplatin both promote apoptosis by upregulation of PUMA, not by upregulation of E-cadherin. Slug silencing significantly sensitized cholangiocarcinoma cells to cisplatin through upregulation of PUMA. Finally, we showed that Slug silencing suppressed the growth of QBC939 xenograft tumors and sensitized the tumor cells to cisplatin through PUMA upregulation and induction of apoptosis. Our findings indicate that Slug is an important modulator of the therapeutic response of cholangiocarcinoma cells and is potentially useful as a sensitizer in cholangiocarcinoma therapy. One of the mechanisms is the regulation of PUMA by Slug.  相似文献   
3.
The combination of photodynamic therapy and chemotherapy is a promising strategy to overcome growing problems in contemporary medicine, such as low therapeutic efficacy and drug resistance. Four zinc(II) phthalocyanine–coumarin conjugates were synthesized and characterized. In these complexes, zinc(II) phthalocyanine was used as the photosensitizing unit, and a coumarin derivative was selected as the cytostatic moiety; the two components were linked via a tri(ethylene glycol) chain. These conjugates exhibit high photocytotoxicity against HepG2 human hepatocarcinoma cells, with low IC50 values in the range of 0.014–0.044 μM . The high photodynamic activities of these conjugates are in accordance with their low aggregation tendency and high cellular uptake. One of these conjugates exhibits high photocytotoxicity and significantly higher chemocytotoxicity. The results clearly show that the two antitumor components in these conjugates work in a cooperative fashion. As shown by confocal microscopy, the conjugates can localize in the mitochondria and lysosomes, and one of the conjugates can also localize in the cell nuclei.  相似文献   
4.
    
Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.  相似文献   
5.
    
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti-inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology.  相似文献   
6.
    
Despite the approval of oncolytic virus (OV) therapy for advanced melanoma, its intrinsic limitations that include the risk of persistent viral infection and cost‐intensive manufacturing motivate the development of analogous approaches that are free from the disadvantages of virus‐based therapies. Herein, reported is a nanoassembly comprised of multivalent host–guest interactions between polymerized paclitaxel (pPTX) and nitric oxide‐incorporated polymerized β‐cyclodextrin (pCD‐pSNO) that through its bioactive components and when used locoregionally recapitulates the therapeutic effects of OV. The resultant pPTX/pCD‐pSNO exhibits significantly enhanced cytotoxicity, immunogenic cell death, dendritic cell (DC) activation, and T cell expansion in vitro compared to free agents alone or in combination. In vivo, intratumoral administration of pPTX/pCD‐pSNO results in activation and expansion of DCs systemically, but with a corresponding expansion of myeloid‐derived suppressor cells and suppression of CD8+ T cell expansion. When combined with antibody targeting cytotoxic T lymphocyte antigen‐4 that blunts this molecule's signaling effects on T cells, intratumoral pPTX/pCD‐pSNO treatment elicits potent anticancer effects that significantly prolong animal survival. This formulation thus leverages the chemo‐ and immunotherapeutic synergies of PTX and nitric oxide and suggests the potential for virus‐free nanoformulations to mimic the therapeutic action and benefits of OVs.  相似文献   
7.
    
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli‐induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light‐triggered doxorubicin release in porphyrin–phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser‐induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light‐triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light‐triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC‐containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg?1 doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.  相似文献   
8.
    
Conventional chemotherapy shows moderate efficiency against metastatic cancer since it targets only part of the mechanisms regulating tumor growth and metastasis. Here, gold nanorod (GNR)‐based host‐guest nanoplatforms loaded with docetaxel (DTX) and small interfering RNA (siRNA)‐p65 (referred to as DTX‐loaded GNR (GDTX)/p65) for chemo‐, RNA interference (RNAi), and photothermal ablation (PTA) cooperative treatment of metastatic breast cancer are reported. To prepare the nanoplatform, GNRs are first coated with cyclodextrin (CD)‐grafted polyethylenimine (PEI) and then loaded with DTX and siRNA through host–guest interaction with CD and electrostatic interaction with PEI, respectively. Upon near‐infrared laser irradiation, GNRs generate a significant hyperthermia effect to trigger siRNA and DTX release. DTX reduces tumor growth by inhibiting mitosis of cancer cells. Meanwhile, siRNA‐p65 suppresses lung metastasis and proliferation of cancer cells by blocking the nuclear factor kappa B (NF‐κB) pathway and downregulating the downstream genes matrix metalloproteinase‐9 (MMP‐9) and B cell lymphoma‐2 (Bcl‐2). It is demonstrated that GDTX/p65 in combination with laser irradiation significantly inhibits the growth and lung metastasis of 4T1 breast tumors. The antitumor results suggest promising potential of the host–guest nanoplatform for combinational treatment of metastatic cancer by using RNAi, chemotherapy, and PTA.  相似文献   
9.
    
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR‐780 loaded pH‐responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine‐based biomimetic micellar shell and acid‐sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site‐specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX‐resistant MCF‐7/ADR cells. Meanwhile, the tumor site‐specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF‐7/ADR tumor growth in tumor‐bearing mice. These results demonstrate that the well‐designed IR‐780 loaded polymeric prodrug micelles for hyperthermia‐assisted site‐specific chemotherapy present an effective approach to reverse drug resistance.  相似文献   
10.
    
We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N′)L][PF6]2 containing arene = p-cymene, N,N′ = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 μM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号