首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22841篇
  免费   3040篇
  国内免费   1239篇
电工技术   311篇
综合类   1450篇
化学工业   12458篇
金属工艺   1459篇
机械仪表   352篇
建筑科学   707篇
矿业工程   411篇
能源动力   1145篇
轻工业   2787篇
水利工程   167篇
石油天然气   1051篇
武器工业   159篇
无线电   612篇
一般工业技术   2500篇
冶金工业   802篇
原子能技术   422篇
自动化技术   327篇
  2024年   54篇
  2023年   455篇
  2022年   678篇
  2021年   944篇
  2020年   869篇
  2019年   816篇
  2018年   808篇
  2017年   925篇
  2016年   1009篇
  2015年   983篇
  2014年   1277篇
  2013年   1756篇
  2012年   1642篇
  2011年   1535篇
  2010年   1189篇
  2009年   1320篇
  2008年   1078篇
  2007年   1364篇
  2006年   1285篇
  2005年   1069篇
  2004年   907篇
  2003年   864篇
  2002年   679篇
  2001年   542篇
  2000年   408篇
  1999年   284篇
  1998年   252篇
  1997年   253篇
  1996年   237篇
  1995年   206篇
  1994年   223篇
  1993年   172篇
  1992年   162篇
  1991年   169篇
  1990年   116篇
  1989年   97篇
  1988年   57篇
  1987年   58篇
  1986年   44篇
  1985年   80篇
  1984年   62篇
  1983年   48篇
  1982年   55篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   
2.
Recovery of hydrogen (H2) from H2-containing gas mixtures has great significance for energy conservation, cost reduction and benefit increase. However, the common separation methods have the ubiquitous problem due to phase equilibrium principle and results in the conflict between H2 concentration and H2 recovery rate in the product gas. Consequently, an innovative conception of hydrate-membrane coupling approach is proposed in this work. In the separation process, hydration and membrane permeation two separation driving forces coexist to achieve the aim of strengthening mass transfer kinetics. H2 and non-H2 components (hydrocarbons) are synchronously and directionally selected by membrane and hydrate to improve different phase compositions. Therefore, the gas in feed side could keep relatively high two separation driving forces (H2 fugacity and hydrocarbons fugacity). The results show that the coupling method could synchronously increase both the concentration and the recovery rate of H2 in the product gas. At the same time, the volume and concentration of the hydrocarbons in hydrate both increases effectively. It indicates that hydrate and membrane separation methods support each other in the separation process. The hydrate-membrane coupling method fundamentally solves the issue of the decreasing driving force resulting from single separation method and phase equilibrium relationship.  相似文献   
3.
A series of large scale direct shear experiments is used to investigate the effect of the geomembrane (GMB) surface roughness, geotextile (GTX) properties, and GTX ageing, on the GMB-GTX interface shear behaviour. Interfaces involving smooth, coextruded textured, and structured surface GMBs underlying four different nonwoven needle-punched staple fibres (GTXs) with mass per unit areas between 200 and 2400 g/m2, and a geocomposite drain (GCD) are examined at normal stresses between 250 and 1000 kPa. The results showed that the interlocking between the GMB and GTX increased with increasing the GMB asperity height and/or decreasing the mass per unit area of the GTX. For the interfaces that involved GTXs preaged prior to the shear box experiments for up to 2 years at 85 °C, it was found that the 2400 g/m2 heat bonded two-layered GTX exhibited internal shear failure at low shear displacements. However, all the highly aged single layered GTXs showed an increase in the peak interface friction angles with the increase in their ageing. For these single layered GTX, the results suggest that assessing the interface friction angles using unaged GTXs for the stability analysis is conservative as long as the GTX remains intact in the field.  相似文献   
4.
A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions.  相似文献   
5.
In this study, the Bayan Obo rare earth concentrates mixed with Na2CO3 were used for roasting research. The phase change process of each firing stage was analyzed. The kinetic mechanism model of the continuous heating process was calculated. This study aims to recover valuable elements and optimize the production process to provide a certain theoretical basis. Using X-ray diffraction (XRD), Fourier infrared spectroscopy, scanning electron microscopy with energy dispersive spectrometry, the reaction process and the existence of mineral phases were analyzed. The variable temperature XRD and thermogravimetric method were used to calculate the roasting kinetics. The phase transition results show that carbonate-like substances first decompose into fine mineral particles, and CaO, MgO, and SiO2 react to form silicates, causing hardening. Further, REPO4 and NaF can directly generate CeF3 and CeF4 at high temperatures, and a part of CeF4 and NaF forms a solid solution substance Na3CeF7. Rare earth oxides calcined at a high temperature of 750 °C were separated to produce Ce0.6Nd0.4O1.8, Ce4O7, and LaPrO3+x. Then, BaSO4, Na2CO3, and Fe2O3 react to form barium ferrite BaFe12O19; the kinetic calculation results show that during the continuous heating process, the apparent activation energy E reaches the minimum in the entire reaction stage in the temperature range of 440–524 °C, and the reaction order n reaches the maximum, which indicates that the decomposition product REFO significantly impacts the reaction system and reduces the activation energy. The mechanism function is F(α) = [?ln (1?α)]1/3. The reaction order n reaches the minimum in the temperature range of 680–757 °C, and the apparent activation energy E is large. The difficulty of the reaction increases during the final stage. The reaction mechanism function is F(α) = [1?(1?α)1/3]2. Observing the entire reaction stage, the step of controlling the reaction rate changes from random nucleation to three-dimensional diffusion (spherical symmetry).  相似文献   
6.
The strategy for the permanent disposal of high-level nuclear waste in Canada involves sealing it in a copper-coated steel container and burying it in a deep geologic repository. During the early emplacement period, the container could be exposed to warm humid air, which could result in the condensation of nitric acid, produced by the radiolysis of the humid air, on the copper surface. Previous studies have suggested that both nitrate and oxygen reduction will drive copper corrosion, with the nitrate reduction kinetics being dependent on the concentration of soluble copper(I) produced by the anodic dissolution of copper in the reaction with oxygen. This study focused on determining the kinetics of nitrate and oxygen reduction and elucidating the synergistic relationship between the two processes. This was investigated using corrosion potential and polarization measurements in conjunction with scanning electron microscopy and X-ray photoelectron spectroscopy. Oxygen reduction was shown to be the dominant cathodic reaction with the oxidation of copper(I) to copper(II) by nitrate, promoting the catalytic cycle involving the reaction of copper(II) with copper to reproduce copper(I).  相似文献   
7.
周佳慧 《中国油脂》2021,46(9):92-98
花生粕是重要的蛋白饲料原料,但由于其氨基酸不平衡,特别是精氨酸与赖氨酸比例严重失衡(精氨酸与赖氨酸含量比值在3~4,理想的精氨酸与赖氨酸含量比值为1.0),限制了其在动物养殖中的应用。研究了复合酶预处理结合乳酸菌发酵花生粕对其品质的改善。结果表明:经菌酶协同处理后,花生粕粗蛋白质含量由46.4%提高至506%,大分子蛋白明显降解为小分子蛋白,酸溶蛋白质含量由2.3%提高至17.8%,多肽含量由1.6%提高至15.7%,蛋氨酸和赖氨酸含量分别提高了77.1%和42.0%,精氨酸降解率为18.7%,精氨酸与赖氨酸含量比值从3.7降低至2.1,总酸含量由06%提高到4.7%,其中乳酸含量由0.64 mg/g提高至14.63 mg/g。菌酶协同处理后的花生粕抗氧化性明显增强,其中每克菌酶协同处理后的花生粕对羟自由基的清除能力与171.6 mg VC相当,比花生粕(与47.6 mg VC相当)提高了2.6倍。  相似文献   
8.
《Ceramics International》2022,48(18):26487-26498
Herein, titanate-based perovskite CaTiO3 nanosheets were successfully designed via boron nitride quantum dots (BNQDs) to fabricate CaTiO3/BNQDs catalyst. The as-fabricated composite catalysts were analysed by transmission electron microscope (TEM), scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), X-ray diffraction (XRD), UV–vis spectroscopy (UV-DRS), photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) techniques. SEM-Mapping analysis showed that the boron and nitrogen elements dispersed well over the CaTiO3 surface which was useful for building electronic channels for rapid transport of photo-induced charge pairs. TEM images verified the attachment of BNQDs around the surface of host CaTiO3 forming intimate interface while the distribution of chemical states was observed by XPS analysis demonstrating strong coupling effect between BNQDs and CaTiO3 through Ti–O–N and Ti–O–B bonds. Moreover, PL and light absorption properties enhanced with the quantum confinement effect of BNQDs. As expected, the photocatalytic degradation rate of CaTiO3/BNQDs was increased to kapp = 0.015 min? 1 with optimum BNQDs loading, which was 2.31 times folder than that of bare CaTiO3 (0.006 min? 1). The enhanced photocatalytic efficiency was observed for CaTiO3/BNQDs than pristine perovskite on account of formation of electron tapping sites, decreased band gap energy and hindered recombination rate. On the other hand, in the presence of H2O2, the degradation percentage increased from 88.5% to 92.1% at the end of 120 min of irradiation while 96.8% of TC was quickly degraded within 60 min after activating with peroxymonosulfate which created strong sulphate radicals. Radical trapping tests indicated that the photo-generated holes were the primary active species in the photocatalytic mechanism. Moreover, CaTiO3/BNQDs catalyst showed excellent stability in recycling tests. Besides, the possible degradation mechanism was proposed. This study shed light on the significance of BNQDs in the enhancement of the photocatalytic activities of titanate-based perovskite for effective degradation of tetracycline antibiotic in contaminated water.  相似文献   
9.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
10.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号