首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281658篇
  免费   24455篇
  国内免费   13909篇
电工技术   16970篇
技术理论   52篇
综合类   37618篇
化学工业   37417篇
金属工艺   10101篇
机械仪表   14466篇
建筑科学   38826篇
矿业工程   15020篇
能源动力   8728篇
轻工业   17027篇
水利工程   14198篇
石油天然气   12269篇
武器工业   2822篇
无线电   19735篇
一般工业技术   22622篇
冶金工业   15492篇
原子能技术   2818篇
自动化技术   33841篇
  2024年   414篇
  2023年   3038篇
  2022年   4996篇
  2021年   6662篇
  2020年   7042篇
  2019年   5975篇
  2018年   5554篇
  2017年   6662篇
  2016年   7966篇
  2015年   8864篇
  2014年   16022篇
  2013年   14686篇
  2012年   18981篇
  2011年   20094篇
  2010年   15907篇
  2009年   16643篇
  2008年   15352篇
  2007年   20187篇
  2006年   19163篇
  2005年   16757篇
  2004年   14150篇
  2003年   12781篇
  2002年   10418篇
  2001年   8807篇
  2000年   7290篇
  1999年   5902篇
  1998年   4408篇
  1997年   3900篇
  1996年   3640篇
  1995年   3131篇
  1994年   2802篇
  1993年   2075篇
  1992年   1848篇
  1991年   1380篇
  1990年   1186篇
  1989年   1051篇
  1988年   827篇
  1987年   588篇
  1986年   431篇
  1985年   393篇
  1984年   351篇
  1983年   266篇
  1982年   241篇
  1981年   169篇
  1980年   139篇
  1979年   115篇
  1978年   63篇
  1977年   75篇
  1976年   56篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.  相似文献   
2.
Calorie restriction (CR) is the most efficacious treatment to delay the onset of age-related changes such as mitochondrial dysfunction. However, the sensitivity of mitochondrial markers to CR and the age-related boundaries of CR efficacy are not fully elucidated. We used liver samples from ad libitum-fed (AL) rats divided in: 18-month-old (AL-18), 28-month-old (AL-28), and 32-month-old (AL-32) groups, and from CR-treated (CR) 28-month-old (CR-28) and 32-month-old (CR-32) counterparts to assay the effect of CR on several mitochondrial markers. The age-related decreases in citrate synthase activity, in TFAM, MFN2, and DRP1 protein amounts and in the mtDNA content in the AL-28 group were prevented in CR-28 counterparts. Accordingly, CR reduced oxidative mtDNA damage assessed through the incidence of oxidized purines at specific mtDNA regions in CR-28 animals. These findings support the anti-aging effect of CR up to 28 months. Conversely, the protein amounts of LonP1, Cyt c, OGG1, and APE1 and the 4.8 Kb mtDNA deletion content were not affected in CR-28 rats. The absence of significant differences between the AL-32 values and the CR-32 counterparts suggests an age-related boundary of CR efficacy at this age. However, this only partially curtails the CR benefits in counteracting the generalized aging decline and the related mitochondrial involvement.  相似文献   
3.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
4.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
5.
Since the discovery in 1922 of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl stable free radical (DPPH·), the chemistry of such open-shell compounds has developed continuously, allowing for both theoretical and practical advances in the free radical chemistry area. This review presents the important, general and modern aspects of the chemistry of hydrazyl free radicals and the science behind it.  相似文献   
6.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
7.
Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments.  相似文献   
8.
The extensive occurrence of textile and pharmaceutical contaminants and their metabolites in water systems has posed significant concerns regarding their possible threat to human health and the environmental system. As a result, herein ZnFe2O4 nanoparticles were synthesized through the use of Monsonia burkeana plant extract. The synthesized nanoparticles were characterized using XRD, FTIR, UV–vis, SEM, EDS, TGA, BET, PL, EPR and VSM. XRD showed that the crystalline structure of ZnFe2O4 nanoparticles with a calculated crystal size of 25.03 nm was formed. FT-IR confirmed the characteristic functional groups contained within the M. burkeana plant were deposited on the formed ferrite nanoparticles. BET analysis confirmed the mesoporous nature of ZnFe2O4 with an average pore diameter of 31.6 nm. Morphological studies demonstrated that the formed nanoparticles had spherical as well as rod-like shapes. ZnFe2O4 photocatalyst illustrated that it may be effortlessly detached by an external magnetic field. The optimum conditions for the 99.8% removal of Methylene Blue was obtained at pH12, within 45min and at the optimum dosage of 25 mg of the catalyst. The as-prepared ZnFe2O4 nanoparticles proved to be easily separated and recycled, and remained efficient even after 5 reuses, proving that the material is highly stable. The ROS studies also demonstrated that electrons are the main factors contributing to the degradation of MB. Upon testing the photocatalytic performance of the sulfonamide antibiotic, sulfisoxazole in water showed a degradation of 67%. This study has shown that these materials can be used in targeting textile and pharmaceutically polluted water.  相似文献   
9.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
10.
Spinal muscular atrophy (SMA) is an autosomal recessive hereditary neuromuscular disease. Exon 7 and 8 of survival of motor neuron 1 (SMN1) gene or only exon 7 homology deletion leads to the failure to produce a full-length SMN gene. The copy number of SMN2 gene with high homology of SMN1 affects the degree of disease and was the target gene for targeting therapy, in which splicing silencer in intron 7 was the key to suppress the inclusion of exon 7. In this study, we projected to use CRISPR/Case 9 for the targeted editing of intronic-splicing silencer (ISS) sequence to promote the inclusion of SMN2 exon 7 and increase the production of SMN2 full-length (FL) gene expression. It happens that there was a protospacer adjacent motif (PAM) at one end of the ISS sequence according to the design of sgRNA. The recombinant vector of sgRNA HSMN2 CRISPR/Case 9 was constructed and transfected into HEK293 cells. Sequencing results showed that the ISS sequence could be edited accurately and targeting in the predicted direction, in which deleting small fragments, inserting small amounts and mutation. Quantitative analysis of RT-PCR products by restriction enzyme of DdeI digestion showed that the FL of SMN2 increased by 8% (P < 0.05). In the primary cultured chondrocytes of SMA mice, in which sgRNA HSMN2 CRISPR/Case9 recombinant vector transfection could increase the SMN2 FL gene by 23% (P < 0.05) and significantly improve SMN protein levels (P < 0.05). CRISPR/Case 9 is an effective tool for gene editing and therapy of hereditary diseases, but it is rarely reported in the treatment of SMA diseases. This study shows that CRISPR/Case 9 was first used for the precision target of ISS sequence editing, which can effectively promote the production of SMN2 FL gene expressions, in which there was an important clinical reference value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号