首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3008篇
  免费   397篇
  国内免费   128篇
电工技术   30篇
综合类   151篇
化学工业   1087篇
金属工艺   151篇
机械仪表   100篇
建筑科学   20篇
矿业工程   12篇
能源动力   155篇
轻工业   168篇
水利工程   3篇
石油天然气   66篇
武器工业   16篇
无线电   356篇
一般工业技术   1051篇
冶金工业   105篇
原子能技术   15篇
自动化技术   47篇
  2024年   8篇
  2023年   71篇
  2022年   62篇
  2021年   145篇
  2020年   145篇
  2019年   160篇
  2018年   135篇
  2017年   175篇
  2016年   180篇
  2015年   155篇
  2014年   232篇
  2013年   263篇
  2012年   250篇
  2011年   238篇
  2010年   161篇
  2009年   170篇
  2008年   140篇
  2007年   189篇
  2006年   163篇
  2005年   140篇
  2004年   107篇
  2003年   82篇
  2002年   52篇
  2001年   35篇
  2000年   28篇
  1999年   17篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1981年   1篇
排序方式: 共有3533条查询结果,搜索用时 31 毫秒
1.
Bimetallic catalysts have been investigated as the most efficient materials to accelerate the chemical transformations at the anode in Direct Ethanol Fuel Cells. A comparative study is presented here to synthesize Ni–Cu bimetallic nanoparticles for the ethanol oxidation reaction on three conducting polymers: poly-ortho-phenylenediamine, poly-meta-phenylenediamine, and poly-para-phenylenediamine. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electrochemical Impedance Spectroscopy (EIS) were used to analyze the modified electrodes. A series of bimetallic Ni–Cu nanoparticles with tunable ratios were successfully synthesized by simply changing the concentrations of Nickel and Copper. It has been confirmed that the best Ni/Cu molar ratio was 25% in the aspect of catalytic performance. The electrocatalyst exhibited an excellent catalytic activity with an anodic current of 70.5 mA cm?2 at the lowest onset potential of 0.39 V with impressive stability. Ni4Cu1/PpPD should be considered as a good alternative to noble metal anode catalyst.  相似文献   
2.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
3.
采用粉末冶金法将纳米单质铜(Cu0)、硅铁(FeSi)、四氧化三铁硅涂层(Fe3O4@SiO2)混合煅烧并制备出新型磁性硅铁载铜吸附剂MagFeSi-Cu0。实验研究不同烟气温度下MagFeSi-Cu0的汞吸附能力基础上,结合颗粒内扩散模型、准二阶动力学模型、Elovich模型及Bangham模型分析了MagFeSi-Cu0吸附Hg0过程的主要控制步骤。在此基础上,依据密度泛函理论(DFT)研究了不同反应温度下FeSi表面Cu0原子与Hg0原子的汞齐作用机制。研究结果表明,Bangham模型的拟合值与MagFeSi-Cu0汞吸附实验值拟合度最高,MagFeSi-Cu0表面痕量Hg0吸附由汞的外扩散和表面铜汞齐吸附共同控制;通过密度泛函计算,发现Cu0颗粒表面Cu-Hg齐吸附能为-0.534 eV,当烟气温度从80℃上升至200℃时,Hg0原子与单质Cu原子的吸附自由能从-22.47 kJ/mol下降至-13.96 kJ/mol,这些结果为深入了解Hg0在Cu(111)表面的反应机理提供了理论基础。  相似文献   
4.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
5.
Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.  相似文献   
6.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
7.
In this work improved electroactive mesoporous Ag-doped bio-ceramics for medical usages are developed, examining their structural, electrical, in-vitro bioactivity, cell cultures and antibacterial properties against various classical pathogenic bacteria. Ag-containing mesoporous bio-ceramics (MBCs): xmol%Ag2O - (100-x)[45.8CaO-8.4B2O3-45.8SiO2] where x = 2, 5, 7.5 and 10 were synthesized through a sol-gel method. The small angle X-ray scattering and electron microscopy studies reveal the embedment of silver nanoparticles in the samples. Existence of silver as Ag+/Ag0 forms in the samples is confirmed by X-ray photoelectron spectroscopy. The N2 adsorption-desorption analysis evidence the mesoporous structure of the samples. The electrical conductivity of samples increases from 5.4 x 10?8 S cm?1 for x = 2 to 1.9 x 10?6 S cm?1 for x = 7.5 and then decreases to 0.9 x 10?6 S cm?1 for x = 10 at 110 °C. In vitro bioactivity studies revealed that Ag-containing MBCs hold the bone-like hydroxyapatite formation after immersion in human blood plasma like-solution such as Dulbecco's Modi?ed Eagle's Medium. The antibacterial effect of samples against pathogenic bacteria (S. aureus, E. coli, P. monas aeruginosa, and B. cereus) increases with Ag concentration (x = 7.5) and then decreases with Ag content (x = 10). Antibacterial effect is greater for the sample with high electrical conductivity. The cell culture studies evidence not considerable cytotoxic effects for Ag-containing MBCs. Finally, the C2C12 myoblast cell culture studies reveal the significant cell growths and differentiation (myogenesis) for high electrical conducting Ag-containing MBCs.  相似文献   
8.
9.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
10.
Ultraviolet (UV) lasers with dynamic wavelength-tunability and high monochromaticity are crucial in a multitude of practical applications yet still remarkable challenges. Here, we show wide wavelength-tuning of single-mode UV lasing based on lanthanide-doped upconversion nanoparticles (UCNPs). The rationally designed Yb3+/Er3+/Tm3+/Gd3+/Ce3+ co-doped multilayer UCNPs, which exhibits a broad gain spectrum with the full width of half maximum of around 57 nm in the UV regime, are developed. More importantly, by taking advantages of a diffraction grating as the tuning component, stable single-mode emission can be achieved in the UCNPs-based external-cavity-extended Fabry–Pérot laser at room temperature. Specifically, the lasing threshold is around 137 µJ cm–2, which is two orders of magnitude lower than that in the previously reported articles. Precise wavelength-tuning from 310 to 363 nm can be realized by adjusting the Littrow angle. This achievement highlights a portable alternative to continuously wideband-tunable UV lasers and opens up new opportunities for constructing compact solid-state UV photon sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号