首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
  国内免费   2篇
化学工业   1篇
金属工艺   11篇
机械仪表   4篇
一般工业技术   4篇
冶金工业   1篇
自动化技术   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2010年   3篇
  2006年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
随着高档数控机床对主轴的运动精度的要求不断提高,研究永磁同步型磨削电主轴运行精度问题是十分必要的。在基于主轴振动误差和热分析的基础上,分别建立了径向误差运动、倾角误差运动和轴向误差运动数学模型。应用最小二乘法近似算法拟合主轴径向误差运动轨迹,然后对倾角运动误差进行建模,得到主轴回转轴线的倾斜角度。结合时域和频域信号分析方法,对轴向运动误差轨迹展开分析。为了实现一次测量主轴径向和轴向误差位移,并且获得主轴热误差,采用了典型的双标准球5-DOF测量主轴误差装置。通过国产某机床厂所研发永磁同步型磨削电主轴在试运行时主轴回转误差问题进行了实验。研究结果表明:当转速升高到最高转速,径向误差和轴向误差升高,离心力对主轴精度作用更加明显;当存在主轴偏心时,径向误差运动轨迹为逐渐由近似圆过渡到花瓣状态;双标准球五点法测试方法不仅可以判断电主轴制造存在的制造、装配等问题,并且该实验方法可应用于电主轴误差运动的实验,同时满足倾角误差、轴向误差运动和主轴温度变形的测试。  相似文献   
2.
考虑轴承预紧力这一非线性因素对轴承支承动态刚度的影响,建立了磨削电主轴系统动力学模型。在转子系统中考虑由于转子质量偏心而产生的不平衡力,采用数值积分方法研究电主轴转子系统在轴承不同预紧力、不同转速下系统的非线性动力学行为。结果表明:轴承预紧力是影响电主轴转子系统非线性动力学特性的一个重要因素,合理的选择转子系统的工作参数,可提高系统的稳定性。  相似文献   
3.
选用已成功使用的消失模铸铝涂料为研究对象,对加料顺序、搅拌时间、搅拌速度对涂料性能的影响进行了研究。最后选择最合适的加料顺序为粘结剂→悬浮剂→耐火骨料,最佳的搅拌时间为60min,制备出理想的涂料,并进行了浇注试验。  相似文献   
4.
在变形温度250~450℃、应变速率0.005~5 s-1下对圆柱试样进行了Gleeble高温压缩试验,并在不同工艺条件下进行了热轧制试验,综合优化后的峰值应变模型、峰值应力模型以及数学常用的二次曲线方程和直线方程,确定了新的变形抗力模型;分析镁板的轧制特性,建立了轧制变形区域几何模型;考虑到变形区域的宽展因素及材料特性,综合传热学基本原理及轧制理论,建立了不同轧制区域的热轧制力模型及总轧制力模型。结果表明:简化后的Sellars峰值应变模型不仅形式较为简单,而且预测精度较高;合理分解温度范围对峰值应力模型的求解,有效提高了该模型的预测精度;新建的变形抗力模型更易于实际生产的引用,并且能够精确表征宽范围变形条件下的热变形机制;轧制变形过程中轧件宽展因素不能忽略,边裂等缺陷主要产生在轧制后滑区域,热轧制力模型分后滑区和前滑区来分别建立能够更好指导镁板的轧制生产,不同轧制条件下总轧制力的求解结果与试验结果较吻合。  相似文献   
5.
AZ31B镁合金中厚板轧制热力耦合场数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Gleeble-1500D热力模拟试验机对铸态AZ31B镁合金圆柱试样进行了宽范围变形条件下的热压缩试验,拟合热压缩试验数据,针对镁合金应变软化特性建立了一种新的热力本构模型;依托于Deform-3D对镁板的实际热轧过程进行了热力仿真分析,依据轧制理论假设、宏观连续介质力学以及热力学原理,采用数学解析的方法建立了镁板热轧制区域中的应变、应变速率值分布模型以及三维温度场、应力场数学模型。研究结果表明:新建的热力本构模型预测精度较高,平均相对误差为5.1%;建立的轧制变形区域中的应变、应变速率值分布模型,温度场数学模型以及热力耦合场数学模型不仅形式简单易于为生产利用,更能精确表征中厚规格镁板热轧制过程中的热-力耦合变形机制。  相似文献   
6.
在变形温度250~450、应变速率0.005~5 下对圆柱试样进行了Gleeble高温压缩试验,并对不同初轧温度、不同轧制压下量下的热轧制过程进行了轧制试验、数值模拟及损伤分析。采用动态材料模型中的计算方法计算了热加工图,用Zener-Hollomon参数法建立了单向压缩时的流变应力模型,最后综合传热学基本原理及轧制理论,建立了变温轧制过程中的流变应力模型。研究结果表明:合理分解温度范围求解单向压缩流变应力模型,有效提高了模型的预测精度;轧制前滑区和后滑区的主传热机制有所区别,考虑到轧辊对轧件的作用力主要分布在后滑区,则此区域为边裂重点研究区域;数值模拟过程中轧件边部区域的Normalized Cockcraft and Latham损伤值最大,并且随着变形温度的降低以及道次压下量的增大而增大,此现象与轧制实验结果相符,不同轧制条件下轧制流变应力模型的求解结果与数值模拟结果较吻合。  相似文献   
7.
本实验制备了用于治疗骨髓炎的以硼酸盐生物活性玻璃为基体负载抗菌素的药物载体系统.此药物载体系统的固相为硼酸盐生物玻璃,其组成为6Na2O-8K2O-8MgO-22CaO-54B2O3-2P2O5(mol%);液相为壳聚糖/柠檬酸/葡萄糖溶液;所载药物为水溶性药物-替考拉宁.在体外的磷酸盐缓冲溶液(PBS)的浸泡实验中,对载体系统中的药物释放、机械性能以及玻璃基体的生物降解性进行了测试,通过高效液相色谱仪测定浸泡溶液中替考拉宁的含量.实验表明,这种硼酸盐生物活性玻璃基药物载体系统中的药物缓释可持续30d;其中,在缓释的第一周内药物缓释量仅达到72%.通过Peppas模型对药物缓释行为进行模拟,证明药物的释放过程符合F ick扩散定律.实验结果还表明,经XRD物相分析证实,这种硼酸盐生物玻璃基体在药物释放的过程中转化为羟基磷灰石(Hydroxyapatite,HA),显示出药物载体系统的体外生物活性.在以兔子为动物模型的体内实验中,药物载体系统治愈了兔子胫骨中的骨髓炎,而且又促进骨创伤处新骨的生成.实验证明,硼酸盐生物活性玻璃是一种既能负载抗菌素药物治疗骨髓炎,又能促进骨修复的优良的生物材料.  相似文献   
8.
选用滑石粉和硅藻土作为耐火骨料,钠基膨润土和羧甲基纤维素钠(CMC)为复合悬浮剂,硅溶胶和聚丙烯酰胺(PAM)为复合粘结剂,通过正交试验,确定了铝合金消失模铸造水基涂料的最佳配比:耐火骨料由70%的滑石粉和30%的硅藻土组成,钠基膨润土、CMC、硅溶胶、PAM、凹凸土与耐火骨料的质量比,分别为6%、2.5%、8%、0.5%和2%,并考察了涂料的多种性能.  相似文献   
9.
该设计是机械和电子的一个很好结合,有助于制作者得到多方面的收获和认识。本设计依据身边常见的材料,采用比较容易地得到的机械和电子零件。易于爱好者亲自动手制作,而且能从制作过程中收获乐趣。本设计分为两个部分。第一部分是机械手臂的制作,第二部分是电路的设计与制作。接下来就每一部分做一一介绍。  相似文献   
10.
采用Gleeble1500D热/力模拟试验机对铸态AZ31B镁合金圆柱试样在变形温度250~450℃、应变速率0.005~5s~(-1)下进行高温压缩试验,基于高精度流变应力模型,依托于刚塑性有限元分析软件针对镁板不同初轧温度、不同道次压下率以及不同轧制速度条件下的中厚板热轧制过程进行了热力耦合数值分析,利用数学解析的方法建立了不同工艺条件下镁板变形区域的温度场数学模型。结果表明,不同热轧工艺条件下轧制变形区域内温度的分布有很大区别,温度场数学模型需要划分不同工艺条件针对轧制后滑区和前滑区来分别建立;用简单数学方程来表征镁合金的传热过程,使得温度在线控制机理模型形式上更为简单,并且能够精确表征中厚规格镁板宽范围轧制条件下的传热机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号