首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   140篇
  国内免费   67篇
电工技术   5篇
综合类   61篇
化学工业   373篇
金属工艺   115篇
机械仪表   30篇
建筑科学   10篇
矿业工程   28篇
能源动力   93篇
轻工业   19篇
石油天然气   14篇
武器工业   1篇
无线电   284篇
一般工业技术   270篇
冶金工业   86篇
原子能技术   29篇
自动化技术   50篇
  2024年   1篇
  2023年   24篇
  2022年   17篇
  2021年   33篇
  2020年   35篇
  2019年   49篇
  2018年   45篇
  2017年   57篇
  2016年   53篇
  2015年   54篇
  2014年   78篇
  2013年   81篇
  2012年   92篇
  2011年   110篇
  2010年   76篇
  2009年   76篇
  2008年   76篇
  2007年   103篇
  2006年   85篇
  2005年   43篇
  2004年   44篇
  2003年   39篇
  2002年   43篇
  2001年   32篇
  2000年   25篇
  1999年   17篇
  1998年   23篇
  1997年   7篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有1468条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
2.
A novel three-dimensional (3D) core-shell nanostructure decorated with plasmonic Au nanoparticles (NPs) was prepared for photoelectrochemical water splitting. In the new nanostructure, ZnO nanorods (NRs) are perpendicular to ZnO nanosheets (NSs), and the ZnO NSs-NRs are coated with a thin TiO2 shell formed by liquid phase deposition. The plasmonic Au NPs were formed in situ on the surface of ZnO NSs-NRs@TiO2 by thermal reduction. A thin TiO2 shell and uniformly distributed Au NPs were successfully obtained. The photoconversion efficiency and photocurrent density of the 3D ZnO NSs-NRs@TiO2-Au nanostructure respectively reached 0.48% and 1.73 mA cm−2 at 1.23 V vs. reversible hydrogen electrode, 4.80 and 4.33 times higher than those of ZnO NSs, respectively. The thin TiO2 shell effectively promoted charge separation, while the surface plasmon resonance effects of the Au NPs improved the photocurrent density. The findings suggest that the 3D ZnO NSs-NRs@TiO2-Au nanostructure is a promising photoanode for photoelectrochemical water splitting.  相似文献   
3.
以离子液体为新型萃取剂萃取稀贵金属具有萃取效率高、选择性强、清洁环保等优点,近年来不断被应用于湿法冶金领域,并取得一定研究成果。本文研究了咪唑类离子液体从高值废线路板浸出液中萃取Au(III)的行为。考察了萃取体系、萃取相比、萃取pH值、萃取时间对Au(III)的影响。结果表明,DBC+[BMIM][NTF2]萃取体系可实现室温下绿色、高效萃取Au(III),对Au(III)选择性强,不与Ni(II)、Cu(II)等其他金属离子共萃。在pH值为0.5、O/A为1:2、萃取时间2min时,可与Au(III)形成稳定络合物,萃取率达到100%。采用1mol草酸对DBC+[BMIM][NTF2]含Au(III)萃取体系进行反萃,O/A为1:10,反萃时间10min时,可实现Au(III)从有机相中全部分离。该研究可为含Au(III)萃取溶液Au(III)与其余金属离子的分离提纯提供数据基础和理论指导。  相似文献   
4.
The production of new solar fuel through CO2 photocatalytic reduction has aroused tremendous attention in recent years because of the increased demand of global energy sources and global warming caused by the mass concentration of CO2 in the earth's atmosphere. In this work, UiO-66-NH2 was co-modified by the Au nanoparticles (Au-NPs) and Graphene (GR). The resultant nanocomposite exhibits a strong absorption edge in visible light owing to the surface plasmon resonance (SPR) of Au-NPs. More attractively, Au/UiO-66-NH2/GR displays much higher photocatalytic activity (49.9 μmol) and selectivity (80.9%) than that of UiO-66-NH2/GR (selectivity: 71.6%) and pure UiO-66-NH2 (selectivity: 38.3%) for the CO2 reduction under visible light. The enhanced photocatalytic performance is primarily dued to the surface plasmon resonance (SPR) of Au-NPs, which could enhance the visible light absorption. The GR sheets could play as an electron acceptor with superior conductivity and thus suppress the recombination of electrons and holes. Besides, the GR could also improve the dispersibility of UiO-66-NH2 so as to expose more active sites and strengthen the capture of CO2. The contact effect and synergy effect among different samples are strengthened in the ternary composites and the photocatalytic performance is therefore improved. This study demonstrates a MOF based hybrid composite for efficient photocatalytic CO2 reduction, the findings not only prove great potential for the design and application of MOFs-based materials but also bring light to novel chances in the development of new high performance photocatalysts.  相似文献   
5.
6.
《Ceramics International》2020,46(1):493-499
The cofiring process of Au paste containing various amount of glass additive with different properties and CaO–B2O3–SiO2 (CBS) green tapes was investigated. The initial shrinkage temperature of Au paste was strongly associated with the softening point and the content of glass additive. The swell of sample and its mechanism during cofiring process was reported. The sheet resistivity of Au electrode was greatly depended on the content of CBS glass additive. When the content of CBS glass additive with the softening point of 704 °C was 3 wt %, the Au electrode exhibited the highest conductivity with the sheet resistivity of 2.4 mΩ/sq. The results obtained in this paper revealed the relationship between the glass additive and cofiring defects of Au electrode in the metal/ceramic multilayer structure, which gave an avenue to manufacture Low temperature co-fired ceramics (LTCC) modules with good quality.  相似文献   
7.
Decomposition of formic acid biomass to generate hydrogen is vital for coping with fossil energy depletion, environmental pollution, and developing clean, efficient, safe, and sustainable modern energy system. In this study, a PdAu/C−C bimetallic catalyst was prepared by the co-impregnation method followed by an atmospheric pressure (AP) cold plasma treatment to synthesize PdAu/C−P catalysts. The resulting PdAu/C−P showed excellent catalytic activity for the formic acid dehydrogenation (FAD) reaction. The total volume of H2 and CO2 released from the FAD reaction was about 375 mL after 4 h at 50 °C, and the initial turnover frequency (TOFinitial) was 808.6 h−1. We used X−ray diffractometry (XRD), temperature programmed reduction (TPR) and high-resolution transmission electron microscopy (HRTEM) to show that plasma can effectively promote the redispersion of Pd−Au particles on the surface of the support. The average particle size of PdAu/C−P (3.5 ± 1.5 nm) was less than PdAu/C−C (4.4 ± 1.9 nm) and uniformly distributed. X-ray photoelectron spectroscopy (XPS), TPR, and HRTEM showed that PdAu/C−P has a higher degree of alloying. In addition, the strong electric field in the plasma facilitated more metal sites located on the outer surface of the support in PdAu/C−P, and the atomic ratio of M/C (M = Pd and Au) (0.0134) was much larger than that of PdAu/C−C (0.0060). The apparent activation energy (Ea) of PdAu/C−P for the FAD reaction was only 27.25 kJ mol−1, and it had much higher activity and stability than the commercial Pd/C (Sigma−Aldrich). The total volume of H2 and CO2 produced over the PdAu/C−P for three cycles was 1.33, 5.87, and 8.56 times that of commercial Pd/C. Overall, the cold plasma enhanced the degree of alloying, promoted the redispersion of agglomerated particles, and regulated the surface enrichment of the active metal components. This is of great significance for guiding the preparation of high−performance multi-metal catalysts by cold plasma.  相似文献   
8.
Narrow-band-gap LaFeO3 (approximately 2.1 eV) has good thermal stability, and applications for light-driven water splitting. Thus, heterojunction catalyst containing LaFeO3 and Au nanoparticles (NPs) are investigated for photoelectrochemical hydrogen production. The use of a citric acid or KOH modifier and calcination yields different LaFeO3 particle morphologies and phases (La(OH)3 alone or La(OH)3 and La2O3, respectively), which affect the Au NPs coverage ratio. In addition, the formation of a heterojunction, the surface-plasma resonances (SPRs) effect, and the unique nanospikes on the Au NPs, red-shift happens in the light wavelength and reduce the photonic extinction to less than 2.1 eV. Further, in ethanol and l-butanol under AM 1.5G irradiation, more hydrogen is generated in the former than the latter at all tested temperatures. In addition, the activation energy for the formation of hydrogen is lower in ethanol than in 1-butanol. Finally, an amorphous structure is beneficial for photocatalysis.  相似文献   
9.
In the present research, magnetically recyclable graphene oxide (GO)/dopamine hydrochloride/AuNPs nanocatalyst are prepared by a green path with Acorus calamus seeds extract as a stabilizing and reducing agent and its catalytic efficiency was used for the reduction of methylene blue (MB) and methyl orange (MO) in the presence of NaBH4 as a reducing agent in the aqueous medium in the ambient conditions. The prepared nanocatalyst was characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and UV–Vis spectroscopy. The prepared nanocatalyst has good catalytic activity and can be regain by an external magnet and recycled several times without considerable loss of its catalytic activity in the process of reduction of organic dyes.  相似文献   
10.
Gold based multimetallic nanoalloys decorated on conjugated polymer nanofibers have been prepared using a greener approach without using any reducing agent. The as-prepared nanohybrids exhibited superior catalytic activity for solar hydrogen production under visible light (λ > 420 nm) irradiation and near infrared light irradiation. The UV–Visible diffuse reflectance spectra displayed strong absorption in the visible region which significantly favours the photocatalytic performance. Furthermore, the efficient charge separation suggested by electrochemical impedance measurement and photocurrent response curves for Au50Pt24Pd26/PPy nanohybrids which exhibited significant enhancement in H2 generation rate compared to Au/PPy nanohybrids. The strong interface contact between Au nanoalloys and PPy nanofibers play an important role for the migration of electron during catalysis. The Mott–Schottky plot revealed that photo generated charge carrier concentration has been increased for Au50Pt24Pd26/PPy nanohybrids (7.93 × 1011cm−3) compare to pure PPy (1.43 × 1011 cm−3). The present study provides a new prospect for using conducting polymer based hybrid as photocatalysts for efficient solar hydrogen production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号