首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6267篇
  免费   589篇
  国内免费   424篇
电工技术   100篇
综合类   306篇
化学工业   1543篇
金属工艺   932篇
机械仪表   300篇
建筑科学   265篇
矿业工程   49篇
能源动力   239篇
轻工业   338篇
水利工程   45篇
石油天然气   174篇
武器工业   21篇
无线电   1207篇
一般工业技术   919篇
冶金工业   316篇
原子能技术   74篇
自动化技术   452篇
  2024年   15篇
  2023年   83篇
  2022年   149篇
  2021年   189篇
  2020年   211篇
  2019年   180篇
  2018年   176篇
  2017年   224篇
  2016年   244篇
  2015年   268篇
  2014年   329篇
  2013年   365篇
  2012年   460篇
  2011年   540篇
  2010年   371篇
  2009年   404篇
  2008年   418篇
  2007年   413篇
  2006年   397篇
  2005年   268篇
  2004年   268篇
  2003年   204篇
  2002年   162篇
  2001年   131篇
  2000年   125篇
  1999年   95篇
  1998年   93篇
  1997年   46篇
  1996年   70篇
  1995年   74篇
  1994年   54篇
  1993年   40篇
  1992年   35篇
  1991年   28篇
  1990年   30篇
  1989年   26篇
  1988年   17篇
  1987年   17篇
  1986年   14篇
  1985年   14篇
  1984年   14篇
  1983年   9篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有7280条查询结果,搜索用时 15 毫秒
1.
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.  相似文献   
2.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
3.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
4.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
5.
6.
All inorganic remote phosphor-in-glass film exhibits excellent properties in high power white light-emitting-diodes (WLEDs) thanks to their easy fabrication and thermal stability. Herein, fabrication of (Lu, Y)3Al5O12: Ce3+ (LuYAG: Ce)phosphors embedded in borosilicate glass film by the conventional solid state reaction and spin coating technology has been reported. The introduction of Y3+ ions reduces the difference of relative growth rate along some directions in growth of LuYAG microparticles, yielding a finer grain with smooth edges. By adjusting the molar concentration of Y3+ ions in LuAG phosphor, a series of tunable broadband emission from green to yellow region is observed and maintains excellent thermal stability. Meanwhile, the decay curves of samples with different Y3+ are almost same. SEM images show that phosphor particles are homogenously distributed within the glass matrix and keep their original morphology, suggesting the phosphor-in-glass films were synthesized as expected. Finally, a simple WLEDs based on the films was constructed using the commercial blue chip. The correlated color temperature ranging from 4853K to 4627K and high color rendering index from 81.4–79.7 were obtained. Upon the different driving current, the chromaticity coordinates of as-fabricated film exhibit good light color stability. These results bring an inspiring insight to tune the luminescent performance for remote WLEDs.  相似文献   
7.
A highly active and stable boron-promoted catalyst was successfully prepared by using the sequential incipient wetness impregnation technique and examined for methane bi-reforming reaction. The initial investigation found that the NiO and B2O3 particles were dispersed on the outer surface of the high surface area SBA-15 support. In addition, the catalytic activity was increased linearly with the tested reaction temperature due to the endothermic nature of the reaction. In fact, the catalyst achieved the CH4 conversion and H2/CO molar ratio of approximately 67.3% and 2.7, respectively at 1073 K. The resulting product ratio is highly suitable for downstream Fischer-Tropsch (FT) synthesis. The B-promoted catalyst showed the lowest degree of catalyst deactivation (4%) at 1023 K. Additionally, the XPS measurements unveiled that the boron facilitates the adsorption of CO2 by donating electrons to the neighbouring Ni cluster and thus improved its catalytic performance. Furthermore, Raman and XRD analysis revealed that the boron promotion on 10%Ni/SBA-15 could prevent the reoxidation and deposition of carbonaceous species.  相似文献   
8.
MCrAlY coatings are widely used to provide protection of hot component in modern gas turbine engines against high‐temperature oxidation and hot corrosion. Coating‐substrate interface, where the substrate is only partially covered by the ?coatings, is vulnerable to the hot corrosion attack. The accelerated degradation at the coating‐substrate interface can cause fast spallation of the coating, leading to the early failure of the gas turbine components. In this paper, MCrAlY powder was deposited on IN792 disks by high‐velocity oxygen‐fuel spraying. The hot corrosion behavior of the coated sample was investigated using (0.8Na, 0.2K)2SO 4 salt deposition at 900°C in lab air. Results showed a minor attack in the coating center, however, an accelerated corrosion attack at the coating‐substrate interface. The fast growth of corrosion products from substrate caused large local volume expansions at the coating‐substrate interface, resulting in an early coating spallation.  相似文献   
9.
10.
Covalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号