首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73700篇
  免费   7807篇
  国内免费   4633篇
电工技术   3108篇
技术理论   2篇
综合类   4966篇
化学工业   18108篇
金属工艺   13400篇
机械仪表   3538篇
建筑科学   6725篇
矿业工程   1341篇
能源动力   2357篇
轻工业   3413篇
水利工程   572篇
石油天然气   1786篇
武器工业   935篇
无线电   3487篇
一般工业技术   14632篇
冶金工业   3069篇
原子能技术   328篇
自动化技术   4373篇
  2024年   196篇
  2023年   1211篇
  2022年   1914篇
  2021年   2354篇
  2020年   2497篇
  2019年   2406篇
  2018年   2264篇
  2017年   2873篇
  2016年   2905篇
  2015年   2926篇
  2014年   3930篇
  2013年   4044篇
  2012年   4951篇
  2011年   5361篇
  2010年   4272篇
  2009年   4384篇
  2008年   3703篇
  2007年   4880篇
  2006年   4669篇
  2005年   3943篇
  2004年   3206篇
  2003年   2957篇
  2002年   2695篇
  2001年   2382篇
  2000年   1957篇
  1999年   1541篇
  1998年   1205篇
  1997年   1009篇
  1996年   844篇
  1995年   657篇
  1994年   537篇
  1993年   443篇
  1992年   316篇
  1991年   208篇
  1990年   141篇
  1989年   113篇
  1988年   77篇
  1987年   31篇
  1986年   21篇
  1985年   19篇
  1984年   18篇
  1983年   12篇
  1982年   14篇
  1981年   6篇
  1980年   18篇
  1979年   8篇
  1978年   2篇
  1975年   4篇
  1959年   2篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dark fermentation of sugarcane vinasse can be used as a “cleaning” step to remove sulfate prior to methanogenesis because sulfidogenic conditions can be successfully established in parallel with biohydrogen production. Using a 22 central composite rotational design (CCRD) and response surface methodology (RSM), this study assessed the impacts of bicarbonate and sulfate availability on the establishment of sulfidogenesis in the thermophilic (55 °C) fermentation of vinasse in batch reactors, equally assessing the impacts on biohydrogen evolution. CCRD-RSM results indicated the favoring of biohydrogen production at the lowest sulfate and bicarbonate concentrations, whilst the opposite was observed for sulfidogenesis. Glycerol, lactate, and hydrogen were the preferential electron donors utilized by sulfate-reducing bacteria (SRB), whilst ethanol was markedly consumed only at high sulfate concentrations. SRB were inhibited by sodium when dosing excess NaHCO3 and Na2SO4. Complementary tests revealed maximum biohydrogen production (2.40 mmol) out of the CCRD, at pH exceeding 7.5 with no interference of sulfidogenesis. Non-efficient biohydrogen production was observed at low pH (<5.0; ~1.90 mmol) because the uptake of lactate was inhibited. Meanwhile, homoacetogenesis was established under intermediate pH range (5.5–6.5), as revealed by the accumulation of acetate (up to 2.5 g L?1). 16S rRNA gene amplicon sequencing further revealed the genera Thermoanaerobacterium/Pseudoclostridium, Desulfotomaculum/Desulfohalotomaculum and Sporomusaceae/Moorella as the main biohydrogen-producing, sulfate-removing and biohydrogen-consuming (homoacetogens) microbial groups, respectively. Hence, using a single inoculum source, vinasse may provide a butyrate-rich (along with biohydrogen-rich biogas) or a sulfate-free and acetate-rich fermented effluent, depending mainly on proper pH control.  相似文献   
2.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
3.
《Ceramics International》2022,48(24):36620-36628
In order to solve the problem of low charging and discharging energy density of dielectric capacitors, the structure design of layered polymer matrix composites is carried out in this paper. Ba0.7Sr0.3TiO3, Ba0.8Sr0.2TiO3 and Ba0.9Sr0.1TiO3 nanoparticles were successfully prepared by the oxalate coprecipitation method. The surface of BaxSr1-xTiO3 was successfully coated with dopamine, which promoted the dispersion of the polymer matrix of the ceramic powder. Monolayer BaxSr1-xTiO3/PVDF composites containing BaxSr1-xTiO3 with different Ba/Sr ratios were successfully prepared by the casting method. Three-layer asymmetric composites with different fillers were successfully prepared by layer-by-layer casting. The phase and microstructure of the as-prepared materials were analyzed by XRD and SEM. The dielectric, electrical conductivity, ferroelectric and energy storage properties of the composites were tested. The effects and laws of the design of the three-layer asymmetric structure on the dielectric properties and energy storage properties of the layered composites are mainly studied. When the structure of the three-layer asymmetric composite is 1-2-3, the breakdown field strength reaches 330 kV/mm, the discharge energy density reaches 8.51 J/cm3, and the charge-discharge efficiency is 67%. This work demonstrates that layered composites with asymmetric properties can facilitate the development of electrical energy storage.  相似文献   
4.
《Ceramics International》2022,48(5):6302-6312
In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for various periods of time. This two-step spray-drying method created hierarchical nano/micro-sphere structures of the LMNCO cathode material. The LMNCO cathode exhibited the best electrochemical performance when synthesized with a TM:CA ratio of 3:2, a calcination temperature of 900 °C, and a calcination time of 5 h. This as-prepared LMNCO composite was then modified with polyimide (PI) at various weight ratios (PI/LMNCO = 0.5, 1.0, and 1.5 wt%) to improve its electrochemical properties. Among the various structures, the LMNCO cathode material coated with 1.0 wt% of PI at a layer thickness of approximately 1.88 nm achieved the best initial discharge capacities. This modified electrode also displayed enhanced cycle stability, with over 93.3 and 87.9% of the capacity retained after 30 cycles at 0.1C and 100 cycles at 1C, respectively. In comparison, the capacity retention of the unmodified LMNCO electrode measured under the same conditions was no more than 91.3% at 0.1C and 70.1% at 1C. Thus, surface modification with PI was an effective method for improving the coulombic efficiency, discharge capacity, and long-term cycling performance of the LMNCO cathode. Such PI-coated LMNCO composite cathode materials appear to be potential candidates for use in next-generation high-performance lithium-ion batteries.  相似文献   
5.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
6.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   
7.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
8.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
9.
为研制车船等壳体所用的轻质、高强复合板材,选用超高分子量聚乙烯(UHMWPE)短纤维纱,制备成单层经纬为120根/(10 cm)的平纹组织,采用多组经纱持续更替交织层的方法制成2L(1+0)型、4L(2+1)型、6L(3+2)型3种多层角联锁结构织物,采用扦插芯棒、模压成型方法制成菱形蜂窝状的热固性环氧树脂基中空板,并与2块真空吸液法制成的面板组成“三合一”复合板,同时测定了复合板材的结构特征及其平拉、平压和弯曲性能。结果表明:3种类型复合板的密度均远小于水的密度,其中6L(3+2)型最小,为0.48 g/cm3;复合板层数越多,环氧树脂越难渗透尤其是在中空板菱形交叉点处,复合板平拉、平压、抗弯曲强度则呈现递增,制成的6L(3+2)型复合板试样平压强度可达到1.03 MPa。  相似文献   
10.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号