首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9062篇
  免费   1233篇
  国内免费   644篇
电工技术   161篇
综合类   427篇
化学工业   4607篇
金属工艺   1025篇
机械仪表   319篇
建筑科学   123篇
矿业工程   76篇
能源动力   85篇
轻工业   514篇
水利工程   14篇
石油天然气   19篇
武器工业   76篇
无线电   901篇
一般工业技术   2234篇
冶金工业   221篇
原子能技术   79篇
自动化技术   58篇
  2024年   21篇
  2023年   257篇
  2022年   256篇
  2021年   445篇
  2020年   388篇
  2019年   373篇
  2018年   432篇
  2017年   418篇
  2016年   410篇
  2015年   364篇
  2014年   457篇
  2013年   542篇
  2012年   493篇
  2011年   573篇
  2010年   408篇
  2009年   555篇
  2008年   438篇
  2007年   564篇
  2006年   594篇
  2005年   406篇
  2004年   426篇
  2003年   363篇
  2002年   328篇
  2001年   273篇
  2000年   203篇
  1999年   151篇
  1998年   137篇
  1997年   102篇
  1996年   101篇
  1995年   89篇
  1994年   76篇
  1993年   63篇
  1992年   61篇
  1991年   62篇
  1990年   33篇
  1989年   39篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1965年   1篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
《Ceramics International》2021,47(19):27386-27394
In order to control the pore characteristics and macroscopical performance of porous ceramics, roles of the freeze casting parameters are the key points. Herein, aligned dendritic porous SiC was fabricated by freeze casting of PCS-camphene solutions with different solid loading, freeze front velocity, temperature gradient, and freezing temperature. Influence of these parameters on the microstructure and compressive strength of porous SiC was investigated. With increasing the PCS content, freeze temperature, freeze front velocity or temperature gradient, degree of undercooling of the camphene was increased, resulting in the formation of smaller pore size, decreased porosity and increased compressive strength. Compared to variables of freeze temperature and temperature gradient, increased freeze front velocity was more efficiency in improving the compressive strength of porous SiC, owing to the formation of smaller pore size and longer secondary dendritic crystals. Promising micron-sized porous SiC with high porosity (79.93 vol%) and satisfactory strength (15.84 MPa) was achieved for 10% PCS-camphene solution under optimized freezing conditions.  相似文献   
3.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
4.
Barium strontium alumino silicate (BSAS); (Ba0.6Sr0.4Al2Si2O8) was synthesized through solid state reaction between BaCO3, SrCO3, Al2O3 and SiO2 subjected to wet milling in isopropanol for about 24 h. The sequence of the solid state reaction was studied by subjecting to DG/DTG from room temperature to 1550 °C. The crystallographic phase evolution was confirmed by X-ray diffraction of the powders calcined in the range 1000 to 1300 °C for 2 h. The monoclinic celsian phase obtained at 1300 °C, pelletized through uniaxial pressing was sinterable to 67 to 78% density in the temperature range of 1300 to 1500 °C. The density improved to 75 to 94% after ball milling for 76 h, while ZrO2 addition further improved the density by 2%. The celcian phase of BSAS was dispersed in isopropyl alcohol, milled for about 24 h and spray coated on to plain SiC and mullite precoated SiC substrates. Sintering of coated samples and characterization for weight gain/loss, microstructure, scratch test prove that mullite + BSAS coating is more effective than single layer coating of BSAS on SiC substrates.  相似文献   
5.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
6.
Bulk micromachining of single-crystal SiC has been challenging due to its extreme stability both mechanically and chemically. To address this issue, a novel tool-based electrolytic plasma etching method is proposed, with which micropatterns and micro-holes are fabricated in SiC in a hydrofluoric acid-free aqueous solution with no need for masks. The material removal is the result of the combined effects of electrolytic plasma chemistry and physics. The chemistry refers to the reaction of Si with hydroxyl radical to form various SiOx and with H to form silanes, and the reactions of C to form volatile carbon oxides or hydrocarbons, all of which are accomplished and enhanced under the electrolytic plasma atmosphere. Besides, the local high temperature of plasma thermally promotes the evaporation or dissolution of SiO2 in NaOH solution. The tool-based electrolytic plasma etching method provides alternative approaches for the fabrication of SiC-based MEMS and devices.  相似文献   
7.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
8.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
9.
In this study, the effect of Co addition on microstructural and mechanical properties of WC-B4C–SiC composites sintered by spark plasma sintering (SPS) method was investigated. For this purpose, three batches of WC-B4C–SiC with different contents of Co (10 vol%, 15 vol%, and 20 Vol %) were sintered at 1400 °C. The results of X-ray diffraction (XRD) analysis of the samples indicated the formation of W2B5, W3CoB3 as well as the remained C phases and unreacted SiC phase. It was observed that by increasing the Co content, the amount of W2B5 phase reduces and W3CoB3 and C contents increase. Therefore, W2B5 peaks were not detected in the sample containing 20vol% Co. Relative density values above 97% were obtained for all the composites. However, a decrease was observed in relative density by increasing the Co content in the composites. The highest flexural strength (510 ± 42 MPa), fracture toughness (10.34 ± 0.82 MPa m1/2), and hardness (20.63 ± 0.75 GPa) were also obtained for the sample containing 10vol% Co compared to the other samples. In addition, Transgranular fracture of SiC as well as pulling out of W3CoB3 and W2B5 particles were observed in the fracture surface micrographs of the samples. The presence of micro-cracks in the SiC grains, fracture of W3CoB3 grains, and crack deflection was reported as dominant toughening mechanisms.  相似文献   
10.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号