首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12466篇
  免费   1128篇
  国内免费   917篇
电工技术   470篇
技术理论   1篇
综合类   774篇
化学工业   2734篇
金属工艺   1222篇
机械仪表   458篇
建筑科学   424篇
矿业工程   179篇
能源动力   388篇
轻工业   953篇
水利工程   73篇
石油天然气   586篇
武器工业   80篇
无线电   1893篇
一般工业技术   1064篇
冶金工业   611篇
原子能技术   288篇
自动化技术   2313篇
  2024年   10篇
  2023年   175篇
  2022年   219篇
  2021年   303篇
  2020年   333篇
  2019年   277篇
  2018年   269篇
  2017年   383篇
  2016年   512篇
  2015年   481篇
  2014年   681篇
  2013年   847篇
  2012年   875篇
  2011年   1063篇
  2010年   899篇
  2009年   941篇
  2008年   785篇
  2007年   892篇
  2006年   865篇
  2005年   610篇
  2004年   531篇
  2003年   532篇
  2002年   390篇
  2001年   320篇
  2000年   264篇
  1999年   215篇
  1998年   135篇
  1997年   137篇
  1996年   91篇
  1995年   78篇
  1994年   63篇
  1993年   66篇
  1992年   42篇
  1991年   53篇
  1990年   25篇
  1989年   24篇
  1988年   22篇
  1987年   16篇
  1986年   18篇
  1985年   15篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1976年   2篇
  1975年   5篇
  1968年   2篇
  1959年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
2.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
3.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
4.
Infections due to Gram-negative bacteria Helicobacter pylori may result in humans having gastritis, gastric or duodenal ulcer, and even gastric cancer. Investigation of quantitative changes of soluble biomarkers, correlating with H. pylori infection, is a promising tool for monitoring the course of infection and inflammatory response. The aim of this study was to determine, using an experimental model of H. pylori infection in guinea pigs, the specific characteristics of infrared spectra (IR) of sera from H. pylori infected (40) vs. uninfected (20) guinea pigs. The H. pylori status was confirmed by histological, molecular, and serological examination. The IR spectra were measured using a Fourier-transform (FT)-IR spectrometer Spectrum 400 (PerkinElmer) within the range of wavenumbers 3000–750 cm−1 and converted to first derivative spectra. Ten wavenumbers correlated with H. pylori infection, based on the chi-square test, were selected for a K-nearest neighbors (k-NN) algorithm. The wavenumbers correlating with infection were identified in the W2 and W3 windows associated mainly with proteins and in the W4 window related to nucleic acids and hydrocarbons. The k-NN for detection of H. pylori infection has been developed based on chemometric data. Using this model, animals were classified as infected with H. pylori with 100% specificity and 97% sensitivity. To summarize, the IR spectroscopy and k-NN algorithm are useful for monitoring experimental H. pylori infection and related inflammatory response in guinea pig model and may be considered for application in humans.  相似文献   
5.
Herein, this paper reports a facile method to prepare electrospun carbon nanofiber mats (ECNFMs) with high specific surface area and interconnected structure using polyacrylonitrile (PAN) as a precursor and novolac resin (NOC) as a polymer sacrificial pore-making agent. Without additional treatment, the prepared ECNFMs have a highly porous structure because NOC decomposes in a wider temperature range than most polymer activators. The NOC content in the PAN nanofibers shows important effects on porosity. The BET specific surface area of ECNFMs reaches a maximum of 1468 m2 g−1 when the precursor nanofibers contained 30 wt% NOC (ECNFM-3) after carbonization at 1000 °C. The supercapacitor device from ECNFM-3 electrode and all-solid-state electrolyte shows excellent cycling durability and high specific capacitance: ≈99.72% capacitance retention after 10 000 charge/discharge cycles and ≈320 mF cm−2 at 0.25 mA cm−2. Furthermore, it shows a large energy density of ≈11.1 μWh cm−2 under the power density of 500 mW m−2. Activation of carbon nanofibers simply by the addition of NOC into precursor nanofibers can offer a handy way to prepare ECNFMs for high-performance all-solid-state supercapacitors and other potential applications.  相似文献   
6.
Directed evolution of Cp*RhIII-linked nitrobindin (NB), a biohybrid catalyst, was performed based on an in vitro screening approach. A key aspect of this effort was the establishment of a high-throughput screening (HTS) platform that involves an affinity purification step employing a starch-agarose resin for a maltose binding protein (MBP) tag. The HTS platform enables efficient preparation of the purified MBP-tagged biohybrid catalysts in a 96-well format and eliminates background influence of the host E. coli cells. Three rounds of directed evolution and screening of more than 4000 clones yielded a Cp*RhIII-linked NB(T98H/L100K/K127E) variant with a 4.9-fold enhanced activity for the cycloaddition of acetophenone oximes with alkynes. It is confirmed that this HTS platform for directed evolution provides an efficient strategy for generating highly active biohybrid catalysts incorporating a synthetic metal cofactor.  相似文献   
7.
Epoxidized methyl esters (EMO) with their high oxirane ring reactivity, acts as a raw material in the synthesis of various industrial chemicals including polymers, stabilizers, plasticizers, glycols, polyols, carbonyl compounds, biolubricants etc. EMO has been generally quantified by the gas chromatography (GC) and high-performance liquid chromatography (HPLC) techniques. Taking into the account of the limitations of these techniques, two qHNMR-based equations have been proposed for the quantification of EMO in the mixture of EMO and methylesters (MO). The validity of the proposed method was determined using standard mixtures of MO and EMO having different molar concentrations. The developed equations have been applied on the samples of EMO prepared from oleic acid in two-step process viz., esterification followed by epoxidation. The qHNMR-based EMO quantification showed acceptable agreement with the results obtained from HPLC analysis.  相似文献   
8.
Hydroborate-based solid electrolytes have recently been successfully employed in high voltage, room temperature all-solid-state sodium batteries. The transfer to analogous lithium systems has failed up to now due to the lower conductivity of the corresponding lithium compounds and their high cost. Here LiB11H14 nido-hydroborate as a cost-effective building block and its high-purity synthesis is introduced. The crystal structures of anhydrous LiB11H14 as well as of LiB11H14-based mixed-anion solid electrolytes are solved and high ionic conductivities of 1.1 × 10−4 S cm−1 for Li2(B11H14)(CB11H12) and 1.1 × 10−3 S cm−1 for Li3(B11H14)(CB9H10)2 are obtained, respectively. LiB11H14 exhibits an oxidative stability limit of 2.6 V versus Li+/Li and the proposed decomposition products are discussed based on density functional theory calculations. Strategies are discussed to improve the stability of these compounds by modifying the chemical structure of the nido-hydroborate cage. Galvanostatic cycling in symmetric cells with two lithium metal electrodes shows a small overpotential increase from 22.5 to 30 mV after 620 h (up to 0.5 mAh cm−2), demonstrating that the electrolyte is compatible with metallic anodes. Finally, the Li2(B11H14)(CB11H12)  electrolyte is employed in a proof-of-concept half cell with a TiS2 cathode with a capacity retention of 82% after 150 cycles at C/5.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号