首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   65篇
  国内免费   5篇
电工技术   14篇
化学工业   279篇
金属工艺   70篇
机械仪表   55篇
建筑科学   40篇
矿业工程   4篇
能源动力   23篇
轻工业   175篇
水利工程   2篇
石油天然气   5篇
无线电   39篇
一般工业技术   319篇
冶金工业   13篇
原子能技术   8篇
自动化技术   176篇
  2022年   7篇
  2021年   25篇
  2020年   22篇
  2019年   27篇
  2018年   53篇
  2017年   33篇
  2016年   36篇
  2015年   50篇
  2014年   71篇
  2013年   139篇
  2012年   60篇
  2011年   68篇
  2010年   69篇
  2009年   69篇
  2008年   63篇
  2007年   53篇
  2006年   24篇
  2005年   16篇
  2004年   18篇
  2003年   16篇
  2002年   25篇
  2001年   8篇
  2000年   14篇
  1999年   7篇
  1998年   14篇
  1997年   7篇
  1996年   14篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   10篇
  1991年   5篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1984年   11篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   10篇
  1974年   6篇
  1973年   12篇
  1972年   4篇
  1961年   5篇
排序方式: 共有1222条查询结果,搜索用时 46 毫秒
1.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
2.
Hydroborate-based solid electrolytes have recently been successfully employed in high voltage, room temperature all-solid-state sodium batteries. The transfer to analogous lithium systems has failed up to now due to the lower conductivity of the corresponding lithium compounds and their high cost. Here LiB11H14 nido-hydroborate as a cost-effective building block and its high-purity synthesis is introduced. The crystal structures of anhydrous LiB11H14 as well as of LiB11H14-based mixed-anion solid electrolytes are solved and high ionic conductivities of 1.1 × 10−4 S cm−1 for Li2(B11H14)(CB11H12) and 1.1 × 10−3 S cm−1 for Li3(B11H14)(CB9H10)2 are obtained, respectively. LiB11H14 exhibits an oxidative stability limit of 2.6 V versus Li+/Li and the proposed decomposition products are discussed based on density functional theory calculations. Strategies are discussed to improve the stability of these compounds by modifying the chemical structure of the nido-hydroborate cage. Galvanostatic cycling in symmetric cells with two lithium metal electrodes shows a small overpotential increase from 22.5 to 30 mV after 620 h (up to 0.5 mAh cm−2), demonstrating that the electrolyte is compatible with metallic anodes. Finally, the Li2(B11H14)(CB11H12)  electrolyte is employed in a proof-of-concept half cell with a TiS2 cathode with a capacity retention of 82% after 150 cycles at C/5.  相似文献   
3.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
4.
Understanding the batch-to-glass conversion process is fundamental to optimizing the performance of glass-melting furnaces and ensuring that furnace modeling can correctly predict the observed outcome when batch materials or furnace conditions change. To investigate the kinetics of silica dissolution, gas evolution, and primary foam formation and collapse, we performed X-ray diffraction, thermal gravimetry, feed expansion tests, and evolved gas analysis of batch samples heated at several constant heating rates. We found that gas evolving reactions, foaming, and silica dissolution depend on the thermal history of the batch in a similar manner: the kinetic parameters of each process were linear functions of the square root of the heating rate. This kinetic similarity reflects the stronger-than-expected interdependence of these processes. On the basis of our results, we suggest that changes in furnace operating conditions, such as firing or boosting, influence the melting rate less than what one would expect without consideration of batch conversion kinetics.  相似文献   
5.
A novel, Nb- and Si-rich and Be-free Ni-based alloy was cast by two methods of investment casting and continuous casting to study the microstructure evolution during solidification and its mechanical properties. The solidification of the alloy started with the primary crystallization of FCC-γ, followed by a binary eutectic reaction, with the formation of a heterogeneous constituent: FCC-γ+G-phase, which replaced the low-melting eutectic (FCC-γ+NiBe) in the Be-bearing alloys. AlNi6Si3 and γ′ formed during the terminal stages of solidification by investment casting, while the formation of AlNi6Si3 was suppressed by continuous casting. The Scheil solidification model agreed very well with the experimental results.  相似文献   
6.
Plastic immersed heat exchangers are used in various applications where chemically neutral and noncorrosive equipment is required. Their potential competitors, namely, polymeric hollow‐fiber bundles, were investigated. Three different fiber bundles were tested as immersed coolers of a hot reservoir. Two types of polypropylene hollow fibers with various outside diameters were employed. Fibers were twisted with different curvature to achieve better distribution and improve natural convection on their outer surface. Calculation by experimental results was compared with the equation for natural convection across the horizontal cylinder, which overestimates heat transfer coefficients and can be applied for only rough estimation. Experimentally achieved pressure drops agreed well with theoretical prediction for laminar flow.  相似文献   
7.
8.
Journal of Mechanical Science and Technology - The article deals with selective laser melting process using CoCrW powder. Our aim was to identify the influence of product position on the building...  相似文献   
9.
Magnesium, as a biodegradable metal, offers great potential for use as a temporary implant material, which dissolves in the course of bone tissue healing. It can sufficiently support the bone and promote the bone healing process. However, the corrosion resistance of magnesium implants must be enhanced before its application in clinical practice. A promising approach of enhancing the corrosion resistance is deposition of bioactive coating, which can reduce the corrosion rate of the implants and promote bone healing. Therefore, a well-designed substrate-coating system allowing a good control of the degradation behavior is highly desirable for tailored implants for specific groups of patients with particular needs. In this contribution, the influence of coating formation conditions on the characteristics of potentiostatically electrodeposited CaP coatings on magnesium substrate was evaluated. Results showed that potential variation led to formation of coatings with the same chemical composition, but very different morphologies. Parameters that mostly influence the coating performance, such as the thickness, uniformity, deposits size, and orientation, varied from produced coating to coating. These characteristics of CaP coatings on magnesium were controlled by coating formation potential, and it was demonstrated that the electrodeposition could be a promising coating technique for production of tailored magnesium-CaP implants.  相似文献   
10.
Barium cerate (BaCeO3) is one of the possible additions to bulk YBa2Cu3O7 single-grain superconductors to suppress the growth of Y2BaCuO5 (Y211) particles. This paper investigates the synthesis of barium cerate powder and its use in YBa2Cu3O7 bulk superconductors. Crystalline barium cerate was synthesized by solid-state reaction, by co-precipitation of oxalates and by sol-gel method. Final calcination was held in air or in vacuum. It is shown that the most efficient in refining Y211 is nanocrystalline barium cerate prepared by sol-gel method calcined in vacuum. The effective refinement of Y211 particles occurred over the entire interval of nanocrystalline BaCeO3 addition from 0.38 to 1.90 wt%. The optimal concentration of nanosize barium cerate was determined, microstructure and superconducting properties were characterized. The effect of Y211 content on trapped field in YBCO bulks with addition of nanocrystalline barium cerate is shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号