首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2219篇
  免费   145篇
  国内免费   85篇
电工技术   47篇
综合类   112篇
化学工业   591篇
金属工艺   242篇
机械仪表   85篇
建筑科学   43篇
矿业工程   19篇
能源动力   215篇
轻工业   21篇
水利工程   9篇
石油天然气   26篇
武器工业   5篇
无线电   207篇
一般工业技术   492篇
冶金工业   35篇
原子能技术   139篇
自动化技术   161篇
  2024年   3篇
  2023年   125篇
  2022年   78篇
  2021年   96篇
  2020年   115篇
  2019年   106篇
  2018年   80篇
  2017年   91篇
  2016年   80篇
  2015年   139篇
  2014年   183篇
  2013年   263篇
  2012年   142篇
  2011年   154篇
  2010年   93篇
  2009年   105篇
  2008年   84篇
  2007年   71篇
  2006年   60篇
  2005年   52篇
  2004年   47篇
  2003年   31篇
  2002年   29篇
  2001年   19篇
  2000年   26篇
  1999年   22篇
  1998年   16篇
  1997年   8篇
  1996年   21篇
  1995年   13篇
  1994年   8篇
  1993年   10篇
  1992年   8篇
  1991年   15篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2449条查询结果,搜索用时 29 毫秒
1.
The H2 storage properties of isoreticular metal-organic framework materials (IRMOFs), MOF-5 and IRMOF-10, impregnated with different numbers and types of heterogeneous C48B12 molecules were investigated using density functional theory and grand canonical Monte Carlo (GCMC) calculations. The excess hydrogen adsorption isotherms of IRMOFs at 77 K within 20 bar indicate that suitable number and type of C48B12 molecules play a crucial role in improving the H2 storage properties of IRMOFs. Among the studied pure and nC48B12 (n = 1, 2, 4, 8) in Ci symmetry impregnating into MOF-5, at 77 K under 6 bar, MOF-5-4C48B12 with a 3.5 wt% and 29.9 g/L hydrogen storage density, and at 77 K under 12 bar, the pure MOF-5 with a 4.9 wt% and 31.0 g/L hydrogen storage density has the best hydrogen storage properties. Whereas, among the studied pure and nC48B12 (n = 1, 2, 4, 8) in S6 symmetry impregnating into IRMOF-10, IRMOF-10-8C48B12 always shows the best hydrogen storage properties among the pure and C48B12-impregnated IRMOF-10 at 77 K within 20 bar. IRMOF-10-8C48B12 has a 6.0 wt% and 34.6 g/L hydrogen storage density at 77 K under 6 bar, and has a 7.1 wt% and 41.4 g/L hydrogen storage density at 77 K under 12 bar. The confinement effect of IRMOFs on C48B12 molecules, and steric hindrance effect of C48B12 molecules on IRMOFs mainly affects the H2 uptake capacity by comparing the absolute H2 molecules in individual IRMOFs units, C48B12 molecules, and IRMOFs-nC48B12 compounds. The absolute hydrogen adsorption profiles show that eight C48B12 molecules impregnating into MOF-5 can exert obvious steric effects for H2 adsorption. The saturated gravimetric and volumetric H2 densities of IRMOF-10-8C48B12 higher than those of MOF-5-8C48B12 due to with larger free volume.  相似文献   
2.
The carbon vacancy in high-entropy carbides (HECs) has a significant impact on their physical and chemical properties, yet relevant studies have still been relatively few. In this study, we investigate the surface energies of HECs with variable carbon vacancies through first-principles calculations. The results show that the surface energy of the (1 0 0) surface of the stoichiometric HECs is significantly lower than that of (1 1 1) surface. With the decrease in carbon stoichiometry, the surface energies of both (1 0 0) and (1 1 1) surfaces increase gradually, which is mainly due to the weakening of covalent bonding and the decrease of metal Hirshfeld-I (HI) charges. However, the surface energy of (1 0 0) surface increases more quickly than that of (1 1 1) surface and will exceed that of (1 1 1) surface when the carbon stoichiometry decreases to a certain extent, which is primarily attributed to the greater decrease rate of metal HI charges of (1 0 0) surface.  相似文献   
3.
《Ceramics International》2022,48(3):3669-3675
ZnAl2O4 nanocrystalline particles were prepared using the solution combustion method using a new combustion fuel, Leucine. The prepared samples' structural, microstructural–elemental composition, and optical characteristics were investigated using XRD, SEM-EDS, and UV–Visible spectroscopy. As-synthesized ZnAl2O4 nanoparticles are polycrystalline, with no secondary phases, and crystallized in a cubic - spinel structure. The polycrystalline nature of the prepared sample is due to the exothermicity of fuel and oxidizer, which demonstrate that the fuel utilized (Leucine) provided adequate energy for the production of nanoparticles in their as-synthesized form, as supported by adiabatic temperature through thermodynamic calculations. The thermodynamic calculations also include a universal method to estimate the specific heat capacity at constant pressure. Furthermore, even after 2 h of calcination at 600 °C, ZnAl2O4 exhibits a single phase with no secondary phases, indicating the material stability and single-phase nature. The crystallinity of ZnAl2O4 nanoparticles was observed to increase with increasing annealing temperature. SEM micrographs of as-synthesized samples exhibit the formation of dense particles, voids, and pores in the as-synthesized sample. In addition, tiny aggregates were detected on the surface of more prominent clusters, which reduced as the calcination progressed. In addition, calcined samples exhibit a greater optical reflectance than as-synthesized samples. Tauc's graphs were used to compute the optical energy bandgap. The calculated energy band gap is redshifted to that of the bulk material. The bandgap energy decreases upon calcination, suggesting that the prepared materials have a larger crystallite size or more crystallinity. Correlations were found between the Tad, and the structural and optical properties of the prepared samples. The findings suggest that Leucine could be used as a novel combustion fuel to produce crystalline ZnAl2O4 nanoparticles in their as-synthesis form.  相似文献   
4.
Electrocatalytic reduction of N2 to NH3 under ambient conditions, inspired by biological nitrogen fixation, is a new approach to address the current energy shortage crisis. As a result, developing efficient and low-cost catalysts is critical. The catalytic activity, catalytic mechanism, and selectivity of α-arsenene (α-Ars) catalysts anchored with various transition metal atoms and doped with different numbers of N atom were investigated for N2 reduction reaction (NRR) in this paper. Results reveal that compared with WN3-α-Ars which is coordinated with three N atoms, asym-WN2As-α-Ars that coordinated with two N atoms not only exhibits high catalytic activity (UL = ?0.36 V), but can also successfully suppress the hydrogen evolution reaction (HER). It is manifested that reducing the number of coordination atoms can promote the selectivity of the transition metal (TM) loaded N-doped arsenene catalysts. Furthermore, activity origin analyses show both the charge on 1N–NH and φ form volcano-type relationship with the limiting potential. The active center of the catalyst, which acts as the charge transporter and has the moderate ability to retrieve charges, is the most efficient in NRR. Overall, this research creates high performance NRR catalysts by varying the number of coordinating N atoms, which provides a novel idea for the development of new NRR catalysts.  相似文献   
5.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
6.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
7.
8.
Owing to the excellent elastic properties and chemical stability, binary metal or light element borides, carbides and nitrides have been extensively applied as hard and low-compressible materials. Researchers are searching for harder materials all the time. Recently, the successful fabrication of nano-twinned cubic BN(Tian et al. Nature 493:385–388, 2013) and diamond(Huang et al. Nature 510:250–253, 2014) exhibiting superior properties than their twin-free counterparts allows an efficient way to be harder. From this point of view, the borides, carbides and nitrides may be stronger by introducing twins, whose formation tendency can be measured using stacking fault energies(SFEs). The lower the SFEs, the easier the formation of twins. In the present study, by means of first-principles calculations, we first calculated the fundamental elastic constants of forty-two borides, seventeen carbides and thirty-one nitrides, and their moduli, elastic anisotropy factors and bonding characters were accordingly derived. Then, the SFEs of the {111} 112 glide system of twenty-seven compounds with the space group F43 m or Fm3m were calculated. Based on the obtained elastic properties and SFEs, we find that(1) light element compounds usually exhibit superior elastic properties over the metal borides, carbides or nitrides;(2) the 5 d transitionmetal compounds(ReB_2, WB, OsC, RuC, WC, OsN_2, TaN and WN) possess comparable bulk modulus( B) with that of cBN( B = 363 GPa);(3) twins may form in ZrB, HfN, PtN, VN and ZrN, since their SFEs are lower or slightly higher than that of diamond(SFE = 277 mJ/m~2). Our work can be used as a valuable database to compare these compounds.  相似文献   
9.
Electrochemical CO2 reduction reaction (CO2RR) is an efficient way in the utilization of CO2. In this work, single transition-metal (TM) atom (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) anchored on two-dimensional (2D) Ti2CN2 are designed for CO2RR using density-functional-theory (DFT) calculation. We show that Ti2CN2 serves as an excellent substrate to support single atom catalysts (SACs), compared to Ti2CO2 and Ti2CF2. We find that the Sc, Ti and V supported on Ti2CN2 show high catalytic activities to produce CO with a low overpotential of 0.37, 0.27, and 0.23 eV, respectively. Differently, the Mn and Fe on Ti2CN2 are catalytically active for the production of HCOOH with a low overpotential of 0.32 and 0.43 eV, respectively. We further show that the negatively charged TM-Ti2CN2 can capture and activate CO2 more effectively, and the catalytic activity and selectivity can be significantly tuned by injecting extra electrons.  相似文献   
10.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号