首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   5篇
建筑科学   1篇
一般工业技术   6篇
  2022年   1篇
  2021年   4篇
  2018年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
目的 探讨木薯秸秆粉的粒径和含量对复合材料物理力学性能及界面结合的影响,以期提高废弃木薯秸秆的利用率。方法 以木薯秸秆粉为增强体,高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂制备木塑复合材料。对木塑复合材料进行拉伸性能、弯曲性能、缺口冲击强度以及吸水性测试,并利用电子显微镜(SEM)对复合材料断面微观结构进行观察和分析。结果 随着秸秆粉含量的增大,拉伸强度和弯曲强度在整体上呈现出增大的趋势,最大值分别可以达到32.5 MPa和49.6MPa,而缺口冲击强度不断下降;当粒径减小时,材料的拉伸强度呈现先下降而后升高的趋势,弯曲强度区别不大,而缺口冲击强度则整体上呈现降低的趋势。当秸秆粉的含量降低、粒径减小时,复合材料表现出较好耐水性能。结论 秸秆粉质量分数为60%,粒径为40~60目时复合材料具有较优异的综合性能,相关性能超过GB/T 24137—2009《木塑装饰板》的使用标准。  相似文献   
2.
木塑复合材料(WPCs)已广泛应用于建筑外墙板、户外铺板、室内装饰、园林景观、汽车内饰等非承重结构材料领域,但由于线型或支链型热塑性聚合物固有的粘弹特性决定了WPCs在受到长期力载荷时易发生蠕变变形,严重影响其作为承重结构材使用。因此抗蠕变是木塑产业界面临的重大技术瓶颈,也是学术界关注的核心科学问题。为更好地了解并改善WPCs的蠕变现象,本文综述了WPCs蠕变行为的研究进展,讨论了原材料、结构和环境条件等因素对其抗蠕变性能的影响,并对WPCs抗蠕变的改进方法进行了总结和分析。WPCs长期蠕变行为测试是评价其耐久性和安全性的必要手段,但传统的长期蠕变测试方法耗时且成本高昂。通过蠕变与时间、温度和外界应力等因素存在的经验关系,可以实现蠕变的加速测试。最后讨论了玻耳兹曼叠加原理、时间-温度-应力叠加原理、分步等温度法和分步等应力法等加速测试方法在WPCs长期蠕变预测中的应用。   相似文献   
3.
制备了不同杨木纤维含量的杨木纤维/聚乙烯复合材料,利用Hirsch模型、Kelly-Tyson模型和Bowyer-Bader模型对杨木纤维/聚乙烯复合材料的微观力学进行建模,通过对杨木纤维/聚乙烯复合材料及塑料基体的拉伸应力-应变曲线和杨木纤维长度分布的研究,计算得到杨木纤维在聚乙烯基体中的取向系数、界面剪切强度和本征抗拉强度,解释了杨木纤维/聚乙烯复合材料拉伸性能的变化规律。此外,利用微观力学模型计算得到了亚临界纤维、超临界纤维、塑料基体对杨木纤维/聚乙烯复合材料拉伸强度的贡献比例。   相似文献   
4.
为了充分降低成本,增加环境友好性并获得良好的木质感,以杨木纤维和毛竹纤维为原料,通过挤出成型制备超高填充聚丙烯基木塑复合材料(UH-WPCs)。基于聚丙烯基体含量的大幅降低,对比分析了填充量和木质纤维种类对UH-WPCs高低温力学性能、高低温蠕变性能、热膨胀性能、尺寸稳定性及吸水性能的影响。结果表明,随着填充量从75wt%增加到90wt%,其线性热膨胀系数大幅降低,蠕变应变逐渐减小而在90wt%时增大;拉伸模量和弯曲模量随填充量的增加先升高而后在90wt%时下降;拉伸强度、弯曲强度和冲击强度随着填充量的增加逐渐降低;在低温?30℃时UH-WPCs的拉伸和弯曲性能较高,高温60℃时冲击韧性较好。温度、湿度及含水率变化均导致UH-WPCs尺寸变化,其中厚度方向尺寸变化率最大,其次为宽度方向,长度方向最小,表现出明显的各向异性;湿度对UH-WPCs的尺寸稳定性的影响远大于温度的作用。杨木基UH-WPCs综合性能优于毛竹基UH-WPCs,这与杨木纤维具有更大的长径比及良好的界面结合有关。UH-WPCs的研究为降低WPCs生产成本和拓宽其应用领域提供了理论依据。   相似文献   
5.
以杨木纤维(WF)为增强材料,以高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂,采用熔融挤出法制备了WF/HDPE复合材料。选取WF含量、偶联剂添加量、挤出温度为自变量,试件的抗冲击强度、弯曲强度、拉伸强度为响应值,采用Box-Behnken Design方法设计实验并利用响应曲面法建立WF/HDPE复合材料力学强度的二次多项数学模型,对WF/HDPE复合材料的挤出工艺进行优化设计。结果表明,WF添加量、MAPE添加量和挤出温度的最佳水平为:47.37wt%、4.23wt%、173.69℃,此时WF/HDPE复合材料的抗冲击强度为4.06 kJ·m?2,弯曲强度为43.79 MPa,拉伸强度为28.59 MPa。模型预测值与实测值误差小于5%,较好地反映了WF/HDPE复合材料力学性能与挤出工艺因素间的关系。   相似文献   
6.
通过共挤出技术制备具有核壳结构的共挤出复合材料,其中壳层为木粉/高密度聚乙烯(W/HDPE),核层为杨木单板层积材(LVL),测试了LVL-W/HDPE和LVL在50 J、75 J及100 J能量下的低速冲击性能,并进一步研究水煮-冰冻-干燥环境处理后两者的低速冲击性能。结果表明,与LVL相比,在50 J能量冲击过程中LVL-W/HDPE的吸收能量和损伤深度分别降低2.9%和15.9%;在75 J能量冲击过程中LVL-W/HDPE的吸收能量和损伤深度分别降低3.9%和9.2%;而在100 J能量冲击下,两者的抗冲击性能基本相同;经水煮-冰冻-干燥环境处理后,由于壳层WPC的保护作用,LVL-W/HDPE不仅保持了良好的抗冲击性能,还表现出了优异的耐环境性能。  相似文献   
7.
利用CONE研究阻燃胶合板的动态燃烧行为   总被引:2,自引:1,他引:1  
利用锥形量热仪CONE调查了磷氮硼系阻燃剂FRW处理胶合板在不同热辐射通量条件下的动态燃烧行为.结果显示:随热辐射通量提高,未阻燃胶合板的热释放速率峰值、烟气释放量和火势增长指数上升明显,火灾危险性高;阻燃胶合板的成炭率较高、热释放和烟释放较低;在燃烧过程中CO产率受热辐射通量增大的影响较小;FRW能显著抑制胶合板的可燃性,从而降低胶合板在使用过程中的火灾安全风险.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号