首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18863篇
  免费   2677篇
  国内免费   1835篇
电工技术   881篇
综合类   2005篇
化学工业   1107篇
金属工艺   1675篇
机械仪表   1578篇
建筑科学   1291篇
矿业工程   442篇
能源动力   347篇
轻工业   649篇
水利工程   335篇
石油天然气   383篇
武器工业   280篇
无线电   1669篇
一般工业技术   2397篇
冶金工业   779篇
原子能技术   173篇
自动化技术   7384篇
  2024年   37篇
  2023年   277篇
  2022年   409篇
  2021年   534篇
  2020年   622篇
  2019年   545篇
  2018年   558篇
  2017年   619篇
  2016年   696篇
  2015年   708篇
  2014年   1112篇
  2013年   1196篇
  2012年   1394篇
  2011年   1480篇
  2010年   1208篇
  2009年   1331篇
  2008年   1304篇
  2007年   1577篇
  2006年   1235篇
  2005年   1144篇
  2004年   940篇
  2003年   771篇
  2002年   664篇
  2001年   515篇
  2000年   445篇
  1999年   372篇
  1998年   267篇
  1997年   238篇
  1996年   205篇
  1995年   180篇
  1994年   146篇
  1993年   116篇
  1992年   109篇
  1991年   63篇
  1990年   64篇
  1989年   63篇
  1988年   29篇
  1987年   23篇
  1986年   12篇
  1985年   22篇
  1984年   23篇
  1983年   23篇
  1982年   19篇
  1981年   13篇
  1980年   17篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Retrieving 3D shapes with 2D images has become a popular research area nowadays, and a great deal of work has been devoted to reducing the discrepancy between 3D shapes and 2D images to improve retrieval performance. However, most approaches ignore the semantic information and decision boundaries of the two domains, and cannot achieve both domain alignment and category alignment in one module. In this paper, a novel Collaborative Distribution Alignment (CDA) model is developed to address the above existing challenges. Specifically, we first adopt a dual-stream CNN, following a similarity guided constraint module, to generate discriminative embeddings for input 2D images and 3D shapes (described as multiple views). Subsequently, we explicitly introduce a joint domain-class alignment module to dynamically learn a class-discriminative and domain-agnostic feature space, which can narrow the distance between 2D image and 3D shape instances of the same underlying category, while pushing apart the instances from different categories. Furthermore, we apply a decision boundary refinement module to avoid generating class-ambiguity embeddings by dynamically adjusting inconsistencies between two discriminators. Extensive experiments and evaluations on two challenging benchmarks, MI3DOR and MI3DOR-2, demonstrate the superiority of the proposed CDA method for 2D image-based 3D shape retrieval task.  相似文献   
2.
Shapley值归因解释方法虽然能更准确量化解释结果, 但过高的计算复杂度严重影响了该方法的实用性. 本文引入KD树重新整理待解释模型的预测数据, 通过在KD树上插入虚节点, 使之满足TreeSHAP算法的使用条件, 在此基础上提出了KDSHAP方法. 该方法解除了TreeSHAP算法仅能解释树结构模型的限制, 将该算法计算Shapley值的高效性放宽到对所有的黑盒模型的解释中, 同时保证了计算准确度. 通过实验对比分析, KDSHAP方法的可靠性, 以及在解释高维输入模型时的适用性.  相似文献   
3.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
4.
5.
Interface shear strength of geosynthetic clay liners (GCL) with the sand particles is predominantly influenced by the surface characteristics of the GCL, size and shape of the sand particles and their interaction mechanisms. This study brings out the quantitative effects of particle shape on the interaction mechanisms and shear strength of GCL-sand interfaces. Interface direct shear tests are conducted on GCL in contact with a natural sand and a manufactured sand of identical gradation, eliminating the particle size effects. Results showed that manufactured sand provides effective particle-fiber interlocking compared to river sand, due to the favorable shape of its grains. Further, the role of particle shape on the hydration of GCL is investigated through interface shear tests on GCL-sand interfaces at different water contents. Bentonite hydration is found to be less in tests with manufactured sand, leading to better interface shear strength. Grain shape parameters of sands, surface changes related to hydration and particle entrapment in GCL are quantified through image analysis on sands and tested GCL surfaces. It is observed that the manufactured sand provides higher interface shear strength and causes lesser hydration related damages to GCL, owing to its angular particles and low permeability.  相似文献   
6.
At present, the synthesis of body temperature triggering shape memory polymers usually requires elaborate structural design, which limits their wide application. Herein, starting from bio-based Eucommia ulmoides gum (EUG), a series of EUG/silica hybrids (ESHs) are prepared through a facile one-pot process, in which EUG is epoxied and then self-crosslinked with SiO2 by epoxy ring-open reaction. Varying the amount of H2O2, the shape memory transition temperature (Ttrans) of ESHs is adjusted to 47.4–36.6 ℃, which is close to human body temperature (37 ℃). Among them, ESH-17 exhibited the best body temperature triggering shape memory ability (Ttrans = 36.6 ℃), which can restore the permanent shape within 60 s at 37 ℃ with a shape fixity ratio of 99% and shape recovery ratio near 100%. In addition, the shape memory mechanism is discussed and shows some application scenarios of ESHs. The as-produced materials can be used as smart biomaterials such as self-tightening sutures, self-sealing root canal filling materials, and so on.  相似文献   
7.
This work aims to develop and evaluate the efficacy of tea tree oil (TTO) ethosomal cream with improved deposition in skin layers for treatment of atopic dermatitis (AD). Ethosomes of TTO are developed using phosphatidylcholine (2% and 3% w/v) and ethanol (20%, 30%, and 40% w/v). Ethosomes are evaluated for percent entrapment efficiency (%EE), vesicle size, zeta potential, and in vitro drug diffusion. Ethosomal creams with optimized ethosomal dispersion are developed and evaluated for physicochemical parameters, thermal stability, ex vivo permeation, skin retention, and in vitro cytotoxicity using HaCat skin cell lines in comparison to conventional creams of TTO. In vivo investigations of optimized creams are performed using BALB/c mice model. The %EE, vesicle size, and zeta potential for optimized ethosomes are found to be 76.19 ± 3.26%, 333.6 nm, and –35.3 mV, respectively. Ethosomal creams showed higher deposition in the epidermis and dermis. The optimized creams are non-cytotoxic to HaCat cell lines. The creams significantly reduce the inflammatory response by decreasing the clinical score and infiltration of white blood cells, eosinophils, and IgE antibodies. Overall efficacy of ethosomal cream is higher than conventional cream. In conclusion, optimized ethosomal cream of TTO shows good efficacy for treatment of AD. Practical applications : The method used for the formulation of ethosomes is simple and can be easily scaled up on the industrial level. The loading of TTO within ethosomes can increase the efficiency by enhanced drug deposition in the epidermis and might also improve its stability against oxidative degradation. Topical ethosomal cream of TTO can improve patient compliance by avoidance of adverse effects linked with corticosteroids and could be a possible complementary or alternative therapy in management of AD.  相似文献   
8.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
9.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
10.
Shape from focus (SFF) is a technique to recover the shape of an object from multiple images taken at various focus settings. Most of conventional SFF techniques compute focus value of a pixel by applying one of focus measure operators on neighboring pixels on the same image frame. However, in the optics with limited depth of field, neighboring pixels of an image have different degree of focus for curved objects, thus the computed focus value does not reflect the accurate focus level of the pixel. Ideally, an accurate focus value of a pixel needs to be measured from the neighboring pixels lying on tangential plane of the pixel in image space. In this article, a tangential plane on each pixel location (i, j) in image sensor is searched by selecting one of five candidate planes based on the assumption that the maximum variance of focus values along the optical axis is achieved from the neighborhood lying on tangential plane of the pixel (i, j). Then, a focus measure operator is applied on neighboring pixels lying on the searched plane. The experimental results on both the synthetic and real microscopic objects show the proposed method produces more accurate three-dimensional shape in comparison to conventional SFF method that applies focus measures on original image planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号