首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15068篇
  免费   1287篇
  国内免费   363篇
电工技术   79篇
技术理论   2篇
综合类   564篇
化学工业   10694篇
金属工艺   242篇
机械仪表   89篇
建筑科学   116篇
矿业工程   215篇
能源动力   260篇
轻工业   676篇
水利工程   39篇
石油天然气   553篇
武器工业   128篇
无线电   328篇
一般工业技术   2194篇
冶金工业   431篇
原子能技术   37篇
自动化技术   71篇
  2024年   62篇
  2023年   164篇
  2022年   193篇
  2021年   389篇
  2020年   382篇
  2019年   385篇
  2018年   361篇
  2017年   549篇
  2016年   611篇
  2015年   483篇
  2014年   685篇
  2013年   844篇
  2012年   1200篇
  2011年   1035篇
  2010年   832篇
  2009年   851篇
  2008年   756篇
  2007年   901篇
  2006年   1030篇
  2005年   804篇
  2004年   768篇
  2003年   648篇
  2002年   589篇
  2001年   481篇
  2000年   227篇
  1999年   208篇
  1998年   165篇
  1997年   99篇
  1996年   119篇
  1995年   107篇
  1994年   117篇
  1993年   98篇
  1992年   68篇
  1991年   55篇
  1990年   41篇
  1989年   39篇
  1988年   29篇
  1987年   35篇
  1986年   31篇
  1985年   90篇
  1984年   71篇
  1983年   51篇
  1982年   57篇
  1981年   3篇
  1980年   3篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   
2.
A novel series of cleavable alkyltrimethylammonium surfactants with different hydrocarbon chain lengths (C8–16) were synthesized. A carbonate break site inserted between the polar head and the hydrocarbon chain makes these compounds hydrolyzable. The reagents used are renewable, (bio)degradable, or reusable. The hydrolysis of these cleavable surfactants will lead to the generation of fatty alcohols and choline, which is an essential biological nutrient. The surface activities in aqueous solution of the synthesized carbonates fulfill the requirement of being good surfactants. In addition, the cleavable compounds containing n-decyl and n-dodecyl chains showed similar or higher antimicrobial activities when compared to a non-cleavable analog.  相似文献   
3.
4.
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.  相似文献   
5.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
6.
In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration showed negligible effect on efficiencies for removal of nitrate and COD.However,the ammonium ions removal rate was moderately reduced,when the influent SMX concentration in wastewater reached 6 mg/L.Total nitrogen removal efficiency remained as high as 76.77%towards the day 158 at the end of experiment.Candidatus_Brocadia and Candidatus_Kuenenia were the functional anammox strains.The unclassified_f__Rhodobacteraceae sp.was predominant heterotrophic denitrifying strain in the studied reactor.The concentrations of soluble extracellular polymeric substances in sludge obviously increased from 16.76 mg/g VSS to 32.31 mg/g VSS,which might protect the nitrogen removal strains from high-concentration SMX.This result provides a theoretical and technical foundation for the application of denitrifying ammonium oxidation process in treating sulfamethoxazole-laden secondary wastewater effluent.  相似文献   
7.
Here, highly‐oriented poly(m‐phenylene isophthalamide)/polyacrylonitrile multi‐walled carbon nanotube (PMIA/PAN‐MWCNT) composite nanofiber membranes with excellent mechanical strength and thermal stability are successfully produced using electrospinning. It is demonstrated that the cooperation of multi‐walled carbon nanotubes (MWCNT) and high‐speed rotating collection is beneficial to the acquisition of highly oriented fibers and effectively improves the mechanical strength of the membrane along the orientation direction. Specifically, the tensile stress of poly(m‐phenylene isophthalamide)/polyacrylonitrile (PMIA/PAN) membrane is enhanced significantly from 10.6 to 20.7 MPa, benefiting from the highly oriented alignment of the fibers as well as the reinforcing effect of MWCNTs on the fibers. Furthermore, the stressing process of single fiber and fiber aggregates is carefully simulated, and the influence of MWCNTs on the mechanical properties of PMIA/PAN‐MWCNT membranes is analyzed comprehensively, providing a meaningful auxiliary means for the study of mechanical properties. In addition, the composite nanofiber membrane has the advantages of both PMIA and PAN, possessing high temperature resistance, flame‐retardancy, and chemical stability, for an ideal high‐temperature material. In short, the as‐prepared PMIA/PAN‐MWCNT composite membrane with excellent comprehensive property emerges a promising application in many fields, especially in high‐tech.  相似文献   
8.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   
9.
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)–metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega‐6 PUFA. In addition to well‐established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.  相似文献   
10.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号