首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12899篇
  免费   1366篇
  国内免费   1020篇
电工技术   408篇
综合类   1421篇
化学工业   1562篇
金属工艺   971篇
机械仪表   873篇
建筑科学   3351篇
矿业工程   689篇
能源动力   371篇
轻工业   244篇
水利工程   402篇
石油天然气   428篇
武器工业   182篇
无线电   806篇
一般工业技术   2316篇
冶金工业   279篇
原子能技术   137篇
自动化技术   845篇
  2024年   26篇
  2023年   175篇
  2022年   302篇
  2021年   414篇
  2020年   472篇
  2019年   424篇
  2018年   388篇
  2017年   504篇
  2016年   515篇
  2015年   516篇
  2014年   746篇
  2013年   838篇
  2012年   989篇
  2011年   1104篇
  2010年   826篇
  2009年   850篇
  2008年   787篇
  2007年   839篇
  2006年   795篇
  2005年   663篇
  2004年   484篇
  2003年   423篇
  2002年   383篇
  2001年   292篇
  2000年   231篇
  1999年   197篇
  1998年   211篇
  1997年   150篇
  1996年   140篇
  1995年   108篇
  1994年   104篇
  1993年   66篇
  1992年   50篇
  1991年   42篇
  1990年   39篇
  1989年   30篇
  1988年   31篇
  1987年   14篇
  1986年   18篇
  1985年   20篇
  1984年   17篇
  1983年   12篇
  1982年   12篇
  1981年   7篇
  1980年   12篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1959年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(5):6266-6276
Porous diatomite ceramics with hierarchical pores and high apparent porosity (50.29–56%) were successfully fabricated via direct stereolithography. The pre-ball-milling time, dispersant type and dispersant concentration were systematically investigated to prepare diatomite pastes with high solid loading, low viscosity and a self-supporting effect. The results showed that a pre-ball-milling time of 24 h was more suitable to prepare diatomite pastes with high solid loading, and Span80 at 2 wt% was the optimal dispersant to obtain 40 vol% diatomite paste with a low viscosity and a self-supporting effect. To restrain the formation of defects, a heating rate as low as 0.2 °C/min was allowed to control the pyrolysis rate in the multistage debinding process. At sintering temperatures ranging from 900 °C to 1000 °C, porous diatomite ceramics exhibited a typical bimodal porosity, high apparent porosity and great flexural strength.  相似文献   
2.
In this study, a sulfidogenic reactor fed with microalgal biomass of Chlorella pyrenoidosa as an electron donor was operated in a continuous mode. This study evaluated the influence of various initial sulfate concentration from 1.0 to 2.5 g/L on anaerobic sulfate reduction kinetics by a sulfidogenic enrichment culture predominantly Desulfovibrio sp. VSV2. It was observed that volumetric sulfate reduction rate (VSRR) was consistently increasing with an increase in volumetric sulfate loading rate (VSLR) across the retention time of 7–10 days. For a retention time of 7 days, the maximum VSRR was noted as 0.0050 g/(L.h) with a corresponding VSLR of 0.0089 g/(L.h). When retention time was maintained for 10 days, a maximum sulfate reduction of 65% and a maximum bacterial concentration of 1.632 g/L were achieved for an initial sulfate concentration of 1.5 g/L. It was concluded that VSLR facilitated through both dilution rate and initial sulfate concentration had a significant influence over sulfate reduction kinetics. The results of the study suggested that the microalgal-fed sulfidogenic system could be effectively employed for reduction of sulfate from sulfate-rich wastewater.  相似文献   
3.
This study aims to fabricate mineral-loading nanocarriers using natural materials. The interaction patterns between ovalbumin (OVA) and four water-soluble polyphenols, namely ferulic acid (FA), (-)-Epigallo-catechin 3-gallate (EGCG), gallic acid (GA) and epicatechin (EC), were investigated. Results showed that the optimised conditions for preparing stable OVA–polyphenol complexes are at the OVA–polyphenol ratio of 4:1 at pH 6, under which OVA–FA and OVA–EGCG showed the highest stability and mineral-loading capacity among four OVA–polyphenol complexes. The fluorescence results indicated that the addition of EGCG and FA induced a significant fluorescence quenching to OVA. The interaction between OVA and polyphenols involved hydrogen bonding, hydrophobic interaction and electrostatic interaction. Fourier transform infrared spectroscopy (FTIR) analysis suggested that both FA and EGCG enhanced the stability and orderliness of the structure of OVA. The transmission electron microscopy images also exhibited the spherical structure of OVA after the addition of FA and EGCG. Furthermore, scanning electron microscope–energy dispersive X-ray spectrum results suggested that OVA–FA and OVA–EGCG complexes were better mineral carriers than OVA–GA and OVA–EC. This study may serve as the theoretical support for the promising application of OVA in the fabrication of mineral-loading nanocarriers in functional food and pharmaceutic.  相似文献   
4.
《Soils and Foundations》2022,62(3):101159
Suffusion erosion, characterized as the selective detachment and transportation of finer particles by seepage flow, is hazardous to the stability and serviceability of geotechnical structures. The removal of finer particles deteriorates the structure and fabric of the soil, leading to the degradation of its mechanical properties. Studies into the effects of suffusion on mechanical behavior have so far produced disparate results depending on the pre-erosion relative density of the specimens tested. To investigate this issue, small cyclic and monotonic loading tests were performed on intact and eroded gap-graded silty sand specimens in three dispersed density states, using a triaxial cell modified for the purpose of erosion. The variation of Young's modulus showed an inverse relationship with the pre-erosion density of the specimen, as the small strain stiffness decreased in the dense cases and increased in the loose cases. Conversely, Poisson's ratio increased in value as suffusion progressed regardless of the initial density of the specimens. In the contractive phase of monotonic loading, the densification of the coarse soil skeleton by the downward seepage flow resulted in a decrease in contractiveness and an increase in secant stiffness. In the dilative phase, the increase in porosity by the erosion of finer particles reduced the dilatancy and peak strength of the specimens. The results suggest that the pre-suffusion density determines the primary locus of affected mechanical behavior in triaxial compression, which shifts from the contractive phase to the dilative phase with the increase in pre-suffusion density. The critical state strength, inferred using stress–dilatancy theory, was largely unaffected by the erosion of finer particles. As the results indicate, pre-erosion density may be of practical significance in assessing the vulnerability to deterioration and collapse of geotechnical formations and structures subjected to suffusion erosion.  相似文献   
5.
A strategy for creating potent and pan-genotypic stimulator of interferon genes (STING) agonists is described. Locking a bioactive U-shaped conformation of cyclic dinucleotides by introducing a transannular macrocyclic bridge between the nucleic acid bases leads to a topologically novel macrocycle-bridged STING agonist (MBSA). In addition to substantially enhanced potency, the newly designed MBSAs, exemplified by clinical candidate E7766 , exhibit broad pan-genotypic activity in all major human STING variants. E7766 is shown to have potent antitumor activity with long lasting immune memory response in a mouse liver metastatic tumor model. Two complementary stereoselective synthetic routes to E7766 are also described.  相似文献   
6.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
7.
We describe the potential anti coronavirus disease 2019 (COVID-19) action of the methide quinone inhibitor, celastrol. The related methide quinone dexamethasone is, so far, among COVID-19 medications perhaps the most effective drug for patients with severe symptoms. We observe a parallel redox biology behavior between the antioxidant action of celastrol when scavenging the superoxide radical, and the adduct formation of celastrol with the main COVID-19 protease. The related molecular mechanism is envisioned using molecular mechanics and dynamics calculations. It proposes a covalent bond between the S(Cys145) amino acid thiolate and the celastrol A ring, assisted by proton transfers by His164 and His41 amino acids, and a π interaction from Met49 to the celastrol B ring. Specifically, celastrol possesses two moieties that are able to independently scavenge the superoxide radical: the carboxylic framework located at ring E, and the methide-quinone ring A. The latter captures the superoxide electron, releasing molecular oxygen, and is the feature of interest that correlates with the mechanism of COVID-19 inhibition. This unusual scavenging of the superoxide radical is described using density functional theory (DFT) methods, and is supported experimentally by cyclic voltammetry and X-ray diffraction.  相似文献   
8.
For thermally postbuckled configurations, the free vibration behavior of functionally graded (FG) Timoshenko beams are investigated. The postbuckling configurations are obtained through a geometrically nonlinear static problem. The free vibration problem around the postbuckled configuration is formulated using its tangent stiffness. The energy based governing equations are solved following the Ritz method. The elements of the tangent stiffness matrix are obtained using the Ritz coefficients. The results are shown to exhibit the effects of FG material, material profile parameter, and length-thickness ratio. The comparative results are presented for both the cases of the physical neutral surface and the geometrical neutral surface.  相似文献   
9.
Dynamic responses of the geosynthetic-encased stone column (GESC) supported embankment under traffic loads have become a hot topic. This study investigates the responses of GESC improved ground under vertical cyclic loading. A series of laboratory tests in a designed model test tank have been carried out with different loading parameters (varied loading amplitudes and frequencies), different column dimensions (varied encasement lengths and column diameters). In the tests, the soil-column stress distribution, accumulated settlement of loading plate, excess pore water pressure in the surrounding soil and lateral bulging of the stone column are monitored. Experimental results indicate that the vertical stress on the stone column increases with the increment of encasement length, and decreases with the increment of column diameter, loading amplitude and loading frequency. The increasing stress on the surrounding soil leads to a greater accumulated settlement of the loading plate and excess pore water pressure, while the increasing stress on the column leads to larger lateral bulging of the column. Excess pore water pressure dissipates effectively through vertical and horizontal drainage channels provided by the stone column and the sand bed. The geosynthetic encasement prevents the clay from obstructing the drainage channel by filtration and guarantees the drainage effect.  相似文献   
10.
The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters (such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号