首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32820篇
  免费   4551篇
  国内免费   2541篇
电工技术   18842篇
综合类   2122篇
化学工业   1670篇
金属工艺   1129篇
机械仪表   1430篇
建筑科学   742篇
矿业工程   689篇
能源动力   1322篇
轻工业   430篇
水利工程   1612篇
石油天然气   298篇
武器工业   116篇
无线电   4776篇
一般工业技术   1545篇
冶金工业   864篇
原子能技术   802篇
自动化技术   1523篇
  2024年   63篇
  2023年   431篇
  2022年   823篇
  2021年   987篇
  2020年   1142篇
  2019年   928篇
  2018年   914篇
  2017年   1366篇
  2016年   1389篇
  2015年   1667篇
  2014年   2366篇
  2013年   1958篇
  2012年   2778篇
  2011年   2941篇
  2010年   2076篇
  2009年   2178篇
  2008年   2229篇
  2007年   2478篇
  2006年   2253篇
  2005年   1702篇
  2004年   1342篇
  2003年   1171篇
  2002年   904篇
  2001年   861篇
  2000年   650篇
  1999年   508篇
  1998年   342篇
  1997年   271篇
  1996年   238篇
  1995年   214篇
  1994年   164篇
  1993年   149篇
  1992年   108篇
  1991年   83篇
  1990年   56篇
  1989年   42篇
  1988年   34篇
  1987年   23篇
  1986年   15篇
  1985年   12篇
  1984年   15篇
  1983年   13篇
  1982年   10篇
  1981年   9篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1964年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
2.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
3.
本文采用超星学习通线上教学平台,以 “高电压技术”课程为对象,实施了规模为120余人的线上线下混合式教学。基于线上教学和传统教学的优势互补,设计了“高电压技术”多个教学环节。归纳分析了混合式教学在各个教学环节取得的效果和问题,并根据学生反馈提出了持续性的改进措施。  相似文献   
4.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
5.
α-Ni(OH)2 is a promising candidate of the currently commercialized β-Ni(OH)2 due to its higher theoretical discharge capacity in alkaline solution; however, its instability and poor conductivity plague the practical application. Herein, we propose α-Ni(OH)2 with Co doping and spherical structure to strengthen the stability and enhance the conductivity and use it as the cathode for nickel-metal hydride batteries. Studies show that proper Co doping promotes the electrochemical reaction between the active materials and the electrolyte due to the spherical α-Ni(OH)2 with enlarged interlayer distance and abundant hole channels, as well as high conductivity of Co, therefore, the obtained spherical α-Ni(OH)2 with 7 mol% Co doping delivers significantly improved discharge capability, which is 384.6 mAh g?1 at 70 mA g?1 (0.2 C), increased by 54.3 mAh g?1 compared with pure α-Ni(OH)2, and at a high current of 5 C, it still gives 269.4 mAh g?1, in contrast 218.5 mA g?1 for the pure α-Ni(OH)2. Besides, the cycling stability of the α-Ni(OH)2 with 7 mol% Co doping maintains 340 cycles at a capacity retention of 80% (1C), which is extended 110 cycles in contrast to the pure α-Ni(OH)2. These results provide the underpinning platform of α-Ni(OH)2 for battery applications with high discharge ability and cycle life.  相似文献   
6.
《Journal of dairy science》2022,105(6):5471-5492
The detection of reproductive tract disease (RTD) 3 wk postpartum is important because of its effect on subsequent reproductive outcomes. Numerous methods for the diagnosis of RTD are described, some of which are more practical and instantaneous in terms of diagnosis. Two of these methods involve identification of purulent vaginal discharge (PVD) and evidence of ultrasonographic uterine changes indicative of endometritis (UE). The objectives of our retrospective observational study were (1) to assess the association of PVD or UE score at the prebreeding examination (PBE) with the hazard of pregnancy within the subsequent breeding season; (2) to determine the test sensitivity (Se) and specificity (Sp) at the point of sampling of both tests using a Bayesian latent class model; and (3) to determine the effect of varying positivity thresholds on test accuracy. To achieve these objectives, we analyzed an initial data set of 5,049 PBE from 2,460 spring-calved cows in 8 herds between 2014 and 2018. Each PBE was conducted once between 25 and 86 d in milk. At each PBE, vaginal discharge was obtained with a Metricheck device (Simcro) whereas uterine contents were assessed using transrectal ultrasonography. Purulent vaginal discharge was scored on a scale of 0 to 3 depending on discharge character, and UE was scored on a scale of 0 to 4 depending on the presence and consistency of intraluminal fluid. Cows with scores of ≥2 in either test had received treatment. Fertility data were available from 4,756 PBE after data exclusion. The association between PVD or UE score at the PBE and subsequent hazard of pregnancy was analyzed using a Cox proportional hazards model. Cows with a PVD score of 2 or 3 were less likely to conceive than cows with a PVD score 0 [score 2 hazard ratio (HR) = 0.74; 95% confidence interval (CI): 0.59–0.94; score 3 HR = 0.65; 95% CI: 0.51–0.84]. Cows with a UE score of 1, 2, 3, or 4 were less likely to conceive than cows with a UE score of 0 (score 1 HR = 0.82; 95% CI: 0.73–0.93; score 2 HR = 0.79; 95% CI: 0.62–1.00; score 3 HR = 0.43; 95% CI: 0.43–0.90; score 4 HR = 0.39; 95% CI: 0.26–0.58). To determine the Se and Sp of PVD or UE score for diagnosis of RTD at the time of PBE, a Bayesian latent class model was fitted on 2,460 individual cow PBE. Flat priors were used for the Se and Sp of UE, whereas informative priors were used for PVD Se (mode = 65%, 5th percentile = 45%) and Sp (mode = 90%, 5th percentile = 80%) and RTD prevalence (mode = 20%, 5th percentile = 10%). Posterior estimates (median and 95% Bayesian probability intervals; BPI) were obtained using ‘rjags' (R Studio). The optimal test thresholds (PVD and UE score ≥1) were selected by assessing the effect of different thresholds on test estimates and using a misclassification cost analysis. Based on these, median (95% BPI) Se for PVD and UE score ≥1 were 44% (29–60%) and 67% (33–100%), respectively. Median Sp for PVD and UE score ≥1 were 90% (86–93%) and 91% (86–93%), respectively. Higher scores in both tests were associated with impaired fertility, and UE scoring with a threshold of ≥1 had the highest test Se and Sp estimates although test Se was conditional on days in milk when the PBE occurred.  相似文献   
7.
《Ceramics International》2022,48(16):23510-23517
In the present work, microstructural refinement and mechanical response of Al2O3–ZrO2 eutectics fabricated by a pulse discharge plasma assisted melting (PDPAM) method were investigated. The solidified microstructure evolves from polygonal eutectic colonies into irregular cellular colonies with increasing the superheating temperature of the melt from 1820 °C to 1900 °C. The average eutectic spacing inside the colonies decreases from 1.80 ± 0.10 μm to 0.25 ± 0.06 μm, and the coarse inter-colonial structure is refined, which is attributed to the increase in undercooling temperature. High-temperature microstructural stability of Al2O3–ZrO2 eutectics is improved significantly as contrasted with the as-sintered ceramics. Besides, the load dependence of Vickers hardness for Al2O3–ZrO2 eutectics is investigated.  相似文献   
8.
The utilization of biological-, electrode- and conductive material-mediated direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea for enhancing methane productivity is widely reported in the literature. However, two cardinal questions are still controversial, i.e., which applied voltage value would be more recommended to enhance methane generation? and how the DIET over IIET has the upper hand in enhancing methane productivity? Herein, the influence of different applied voltages to promote biological-, conductive- and electrode-mediated DIET was investigated in MEC-AD reactors with conductive material. Polarized bioelectrodes induced electrode-mediated DIET (eDIET) and biological DIET (bDIET), in addition to cDIET (conductive material-mediated DIET), improved the methane yield to 315.40 mL/g CODr with an applied voltage of 0.9 V. Whereas further increase of applied voltage 1.2 V, lessened methane production efficiency due to high-voltage inhibition and adverse effect on DIET promotion. The anaerobic digestion coupled microbial electrolysis cells with optimal electric potential selectively promotes the DIET through polarized electrodes were confirmed through microbial analysis. As the contribution of DIET increased to 80%, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.  相似文献   
9.
The hydrogel electrolyte is an important part of safety and development potential in zinc-based energy storage equipment due to its inherent low mechanical strength and voltage decomposition. However, hydrogel electrolytes possess a reduced working life for zinc dendrites growth and a narrow voltage window. In this study, a hydrogel electrolyte prepares by the zwitterionic monomer [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) (MS) and sodium alginate (SA) alleviate these problems. The zwitterionic double-network hydrogel has good mechanical strength, inhibits the growth of zinc dendrites, enhances practicability, greatly increases the voltage window (0–2.4 V), and has self-healing properties to its rich functional groups. The assembled zinc-ion hybrid supercapacitors (ZHSs) have a high-power density of 172.33 W kg?1 and an energy density of 88.56 Wh·kg?1 at 0.5 A g?1. The assembled zinc-ion battery also has good electrochemical performance. Flexible ZHSs and batteries provide power to the timer stably under different bending angles. The zwitterionic double-network hydrogel can be applied to both zinc-based supercapacitors and batteries.  相似文献   
10.
《Ceramics International》2022,48(22):33115-33121
As a critical topological phase transition material, SrFeOx could play an essential role in the field of resistive memory. How to implement resistance-switching more softly and ensure the stability of materials has always been a relevant research hotspot. Regulating the oxygen environment during the deposition process of the films can effectively control the stoichiometry of the functional layer and then improve the resistance-switching characteristics of the device. In this paper, a SrFeOx hetero-film was prepared by oxygen pretreatment on the SrRuO3 surface before SrFeOx deposition, and the as-assembled micrometer-scale device exhibits a low set operating voltage of 0.6 V and favorable cycling characteristics. The SrFeOx hetero-film reveals a vertical brownmillerite superlattice-like structure with ~20 nm perovskite buffer layer, which benefits the connection and rupture of conductive filament. Additionally, XPS and UV–vis were used to analyze the bonding energy and band gap of SrFeOx hetero-film, and offers the experimental basis for the explanation of the conductive mechanism. Therefore, the device based on SrFeOx hetero-film with low operation voltage provides a reference for low power consumption research on topological phase transition material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号