首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1250篇
  免费   81篇
  国内免费   39篇
电工技术   25篇
综合类   49篇
化学工业   475篇
金属工艺   76篇
机械仪表   15篇
建筑科学   34篇
矿业工程   34篇
能源动力   51篇
轻工业   19篇
水利工程   64篇
石油天然气   23篇
武器工业   2篇
无线电   91篇
一般工业技术   168篇
冶金工业   212篇
原子能技术   13篇
自动化技术   19篇
  2024年   1篇
  2023年   31篇
  2022年   41篇
  2021年   47篇
  2020年   46篇
  2019年   32篇
  2018年   56篇
  2017年   55篇
  2016年   50篇
  2015年   43篇
  2014年   50篇
  2013年   59篇
  2012年   83篇
  2011年   91篇
  2010年   59篇
  2009年   76篇
  2008年   58篇
  2007年   73篇
  2006年   68篇
  2005年   53篇
  2004年   39篇
  2003年   51篇
  2002年   29篇
  2001年   40篇
  2000年   25篇
  1999年   30篇
  1998年   14篇
  1997年   6篇
  1996年   11篇
  1995年   11篇
  1994年   3篇
  1993年   12篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有1370条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(20):29862-29872
Thermal shock parameters (R, R''', R'''' and Rst) of MgAlON–MgO composites obtained with additions of spent MgO–C brick were calculated using measured mechanical properties and thermal expansion coefficient, determining their resistance to fracture initiation and crack propagation. The cyclic thermal shock experiments of MgAlON–MgO composites performed from 1398 K to ambient temperature indicate that as number of thermal shock cycle increases, retained strength ratio of MgAlON and MgAlON–4.2 wt%MgO sharply decrease and then keep constant, while that of MgAlON–10.5 wt%MgO and MgAlON–15.7 wt%MgO slowly decrease. The reason for the difference is that MgAlON and MgAlON–4.2 wt%MgO show low value of R''' and R'''', and high value of R and Rst. Moreover, precipitation of impurity containing Fe may play a positive role in improvement of thermal shock resistance of MgAlON–MgO composites. MgAlON?4.2 wt%MgO has the maximum retained strength (55 MPa) even after 5 thermal shock cycles, which is expected to be used in the metallurgical industry.  相似文献   
2.
《Ceramics International》2022,48(2):2377-2384
Bi2O3, Y2O3 and MgO co-doped BaTiO3 (BT)-based X8R ceramics were synthesized successfully for the first time. The effects of the sintering temperature and Bi2O3, Y2O3 and MgO dopants on the dielectric properties were investigated systematically. Bi2O3 doping can increase the Curie temperature (Tc), but reduces the overall dielectric permittivity. On the other hand, Y2O3 doping is beneficial to the formation of core-shell microstructure and the increase of Tc, whereas MgO can prevent excessive Y2O3 from diffusing into grain core, and thereby further contributes to the generation of the core–shell microstructure. The generation of the typical core-shell microstructure was confirmed and investigated in detail by using transmission electron microscopy (TEM). It is argued that the synergistic effects of Bi2O3, Y2O3 and MgO co-doping in terms of the formation of the core-shell structure and the increase of Tc, can help improve the temperature stability of the dielectric permittivity effectively. Increasing the sintering temperature leads to an increase in the grain size, which in turn leads to an increase in the overall dielectric permittivity due to the grain size effect.  相似文献   
3.
In this study, MgO nanoparticles were successfully fabricated and incubated inside ZnO NPs to form MgO/ZnO nanocomposite for biomedical applications. The x-ray diffraction analysis of MgO, ZnO, and MgO/ZnO has shown the single-phase x-ray diffraction patterns through X'pert High score. The crystallite sizes were calculated as 18 nm, 42 nm, and 53 nm, respectively. The average particle size of MgO, ZnO, and MgO/ZnO nanopowders depicted from secondary electron images of field emission electron microscopy were 56 nm, 400 nm, and 450 nm, respectively. The presence of MgO NPs inside ZnO NPs was confirmed by transmission electron microscopy. The elemental dispersive spectroscopy of MgO, given the peaks of oxygen and magnesium, also showed only zinc and oxygen peaks in ZnO, which confirms no other impurities in MgO and ZnO powders. The elemental analysis of MgO/ZnO nanocomposite showed the peaks of Zinc and Oxygen, along with a tiny peak of Mg. The photoluminescence and UV–vis spectroscopy revealed the absorbance fluorescence limit of the nanomaterials. Fourier transform infrared spectroscopy confirmed the several groups present in the nanocomposite. The biocompatibility of MgO, ZnO, and MgO/ZnO was observed with human peripheral blood mononuclear cells. The cytotoxicity studies were also performed against human cancer (liver and breast) cell lines. The MgO, ZnO, and MgO/ZnO exhibited the antimicrobial properties against Escherichia coli and Staphylococcus aureus.  相似文献   
4.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
5.
《Ceramics International》2022,48(11):15124-15135
Phase equilibria of the PbO-“FeO”-SiO2-ZnO, PbO-“FeO”-SiO2-Al2O3 and PbO-“FeO”-SiO2-MgO slags with liquid Pb metal, solid or liquid Fe metal and solid oxides (cristobalite and tridymite SiO2, willemite (Zn,Fe)2SiO4, wustite (Fe,Al)O1+x, spinel (Fe,Al)3O4, olivine Fe2SiO4, corundum (Al,Fe)2O3, mullite Al6Si2O13 and pyroxene (Mg,Fe)SiO3) were investigated at 1125–1670 °C. These conditions correspond to the minimum solubility of PbO in slag in presence of Pb and Fe metals at reducing conditions and represent the limit of lead smelting and slag cleaning process. High-temperature equilibration on silica, corundum or iron foil substrates, followed by quenching and direct measurement of Pb, Fe, Si, Zn, Al and Mg concentrations in the liquid and solid phases with the electron probe X-ray microanalysis (EPMA) was used. Present data can be used to improve the thermodynamic models for all phases in this system.  相似文献   
6.
A growing interest in designing high-alumina MgO-bonded refractory castables has been identified in recent years due to the magnesia ability to react: (i) with water at the initial processing stages of these materials (inducing the precipitation of brucite phase) or (ii) with alumina, giving rise to in situ MgAl2O4 generation at high temperatures. Nevertheless, despite the great potential of caustic magnesia to be used as a binder in such systems due to its high reactivity, it is still a challenge to control the hydration reaction rate of this oxide and the negative effects derived from the expansive feature of Mg(OH)2 formation. Thus, this work evaluated the incorporation of different contents of aluminum hydroxyl lactate (AHL) into caustic magnesia-bonded castables, aiming to control the brucite precipitation during the curing and drying steps of the prepared samples, resulting in crack-free refractories. The designed compositions were characterized via flowability, setting behavior, X-ray diffraction, cold flexural strength, porosity, permeability and thermogravimetric measurements. According to the results, instead of Mg(OH)2, hydrotalcite-like phases [Mg6Al2(OH)16(OH)2.4.5H2O and Mg6Al2(OH)16(CO3)·4H2O] were the main hydrated phases identified in the AHL-containing compositions. The addition of 1.0 wt% of aluminum hydroxyl lactate to the designed castable proved to be, so far, the best option for this magnesia source, resulting in the development of a crack-free refractory with enhanced properties and greater spalling resistance under heating.  相似文献   
7.
《Ceramics International》2022,48(11):15017-15025
The dissolution behavior of MgO in CaO–SiO2–Al2O3 ternary slag at the interface of single-crystal, dense poly-crystal, and porous poly-crystal MgO was investigated to evaluate the effect of the surface properties of the MgO. The experimental results revealed that a detached spinel layer formed at the MgO interface due to the change in thermodynamic condition of the slag, which was independent of the surface properties. On the other hand, it was also confirmed that the growth rate and morphology of the detached spinel layer strongly depended on the surface properties, such as porosity and curvature of MgO. During the formation of the spinel layer at the interface during MgO dissolution, a kinetic approach adopting parabolic relation theory was employed to determine the correlation between the surface properties and the spinel growth mechanism.  相似文献   
8.
北京放射性核束装置在线同位素分离器(BRISOL)采用100 MeV、200 μA回旋加速器提供的质子束打靶产生中、短寿命放射性核束,在线分析后供物理用户使用,其质量分辨率好于20 000。为开展20Na核的奇异衰变特性研究,研制了氧化镁靶,并采用100 MeV质子束轰击氧化镁靶在线产生了20~26Na+的钠同位素放射性核束。当质子束流强为8 μA时,20Na+离子束的最大产额为2×105 s-121Na+离子束的最大产额为4×108 s-1。完成了北京放射性核束装置首个放射性核束物理实验,累计供束近200 h。  相似文献   
9.
The thermodynamic efficiency analysis of the MgO/Mg based CH4 reforming and H2O splitting process is performed in this paper. The study is conducted by considering two process configurations, namely, a) MgO/Mg based open process where Mg and syngas is produced (MS process), and b) MgO/Mg based semi-open process where syngas and H2 is generated (MSH process). The thermodynamic equilibrium analysis indicate that the best possible thermal reduction temperature for both processes is 2100 K and, in case of the MSH process, the water splitting step is feasible in the range of 500–900 K. As per the findings, for the MS process, the solar energy required to drive the process increases by 958.2 kW as the CH4/MgO ratio upsurges from 0.1 to 1. For the MSH process, the minimum amount of solar energy needed to run the process i.e., 1203.1 kW can be accomplished at water splitting temperature of 900 K and CH4/MgO molar ratio = 1. Based on the solar-to-fuel energy conversion efficiency, the MSH process appears to be more advantageous (54.5%) than the MS process (41.3%). The solar-to-fuel energy conversion efficiency of the MSH process can be further enhanced up to 65.6% by reclaiming 50% of the heat dissipated by the coolers and WS reactor.  相似文献   
10.
A phase stability map of metallic magnesium powder, exposed to environmental conditions for 12 months (Mg-12M) and subjected to different high-energy ball-milling speeds and milling times, was constructed. Mg-12M−160 [½MgO-⅓Mg(OH)2-⅙hydromagnesite] and Mg-12M−640 [¼MgO-⅝Mg(OH)2-⅛hydromagnesite] composites were obtained changing the milling conditions. The correlation among the accumulated energy (ΔEaccum), the impact energy (ΔEhit), and the phase stability under different high-energy ball-milling conditions were generated. The Mg-12M−160 composite had a hydrogen storage capacity of 0.63 wt% at −196 °C and 8.3 bar, although further hydrogen adsorption at higher pressures is expected. Structural defects play a significant role in the adsorption capacity. A representation of the possible absorption mechanism is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号