首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51774篇
  免费   4474篇
  国内免费   1961篇
电工技术   5519篇
技术理论   5篇
综合类   3117篇
化学工业   14635篇
金属工艺   2187篇
机械仪表   1274篇
建筑科学   2121篇
矿业工程   2219篇
能源动力   4949篇
轻工业   3961篇
水利工程   511篇
石油天然气   4967篇
武器工业   212篇
无线电   2446篇
一般工业技术   3768篇
冶金工业   3500篇
原子能技术   421篇
自动化技术   2397篇
  2024年   99篇
  2023年   610篇
  2022年   1023篇
  2021年   1370篇
  2020年   1460篇
  2019年   1265篇
  2018年   1172篇
  2017年   1363篇
  2016年   1551篇
  2015年   1642篇
  2014年   3099篇
  2013年   2947篇
  2012年   3844篇
  2011年   3958篇
  2010年   2891篇
  2009年   2896篇
  2008年   2370篇
  2007年   3333篇
  2006年   3135篇
  2005年   2784篇
  2004年   2437篇
  2003年   2242篇
  2002年   1901篇
  2001年   1687篇
  2000年   1406篇
  1999年   1075篇
  1998年   795篇
  1997年   711篇
  1996年   612篇
  1995年   541篇
  1994年   396篇
  1993年   303篇
  1992年   267篇
  1991年   190篇
  1990年   161篇
  1989年   120篇
  1988年   77篇
  1987年   70篇
  1986年   64篇
  1985年   62篇
  1984年   54篇
  1983年   38篇
  1982年   74篇
  1981年   19篇
  1980年   22篇
  1978年   8篇
  1977年   11篇
  1976年   11篇
  1975年   9篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
2.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
3.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
4.
This review classifies drug-design strategies successfully implemented in the development of histone deacetylase (HDAC) inhibitors, which have many applications including cancer treatment. Our focus is on especially demanded selective HDAC inhibitors and their structure-activity relationships in relation to corresponding protein structures. The main part of the paper is divided into six subsections each narrating how optimization of one of six structural features can influence inhibitor selectivity. It starts with the impact of the zinc binding group on selectivity, continues with the optimization of the linker placed in the substrate binding tunnel as well as the adjustment of the cap group interacting with the surface of the protein, and ends with the addition of groups targeting class-specific sub-pockets: the side-pocket-, lower-pocket- and foot-pocket-targeting groups. The review is rounded off with a conclusion and an outlook on the future of HDAC inhibitor design.  相似文献   
5.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
6.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
7.
Hydrogen-rich combustion in engines helps in reducing pollutants significantly. But hydrogen usage on a moving vehicle is not getting large-scale user acceptance mainly due to its poor energy storage density resulting in shorter driving ranges. This storage issue led to the hunt for mediums that can efficiently produce on-board hydrogen. Methanol proves to be an efficient alcohol fuel for producing hydrogen through steam reforming reaction. The heat energy required for such endothermic reaction is obtained through exhaust engine waste energy and this process is collectively known as thermochemical recuperation. However, the conventional reactor used for this process faces a lot of problems in terms of efficiency and methanol conversion. In this study, an attempt has been made to improve the design of the reactor for on-board hydrogen generation using engine exhaust heat for addressing the challenges related to performance and hydrogen yield. For enhancing the heat transfer, a finned surface (straight & wavy) was introduced in the reactor which resulted in an increment in methanol conversion significantly. It was found that wavy fin improved the methanol conversion up to 96.8% at an exhaust inlet temperature of 673 K. Also, a diffusing inlet section was introduced to increase the residence time of reactant gases while passing through the catalyst zone. Under given inlet conditions, the methanol conversion for 6° diffuse inlet reactor goes up to 87.9% as compared to 75.4% for the conventional reactor.  相似文献   
8.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
9.
Metal–organic framework (MOF) membranes are promising for efficient separation applications. However, the uncontrollable pathways at atomic level impede the further development of these membranes for molecular separation. Herein we show that vapor linker exchange can induce partial amorphization of MOF membranes and then reduce their transport pathways for precisely molecular sieving. Through exchanging MOF linkers by incoming ones with similar topology but higher acidity, the resulted metal-linker bonds with lower strength cause the transformation of MOF membranes from order to disorder/amorphous. The linker exchange and partial amorphization can narrow intrinsic apertures and conglutinate grain boundary/crack defects of membranes. Because of the formation of ultra-microporous amorphous phase, the MOF composite membrane shows competitive H2/CO2 selectivity up to 2400, which is about two orders of magnitude higher than that of conventional MOF membranes, accompanied by high H2 permeance of 13.4 × 10−8 mol m−2 s−1 Pa−1 and good reproducibility and stability.  相似文献   
10.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号