首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44808篇
  免费   4346篇
  国内免费   1250篇
电工技术   1835篇
技术理论   1篇
综合类   3590篇
化学工业   12257篇
金属工艺   857篇
机械仪表   1416篇
建筑科学   4826篇
矿业工程   1060篇
能源动力   862篇
轻工业   7226篇
水利工程   634篇
石油天然气   540篇
武器工业   216篇
无线电   7797篇
一般工业技术   5057篇
冶金工业   674篇
原子能技术   167篇
自动化技术   1389篇
  2024年   97篇
  2023年   483篇
  2022年   1015篇
  2021年   1195篇
  2020年   1195篇
  2019年   1035篇
  2018年   999篇
  2017年   1450篇
  2016年   1464篇
  2015年   1664篇
  2014年   2397篇
  2013年   2491篇
  2012年   3172篇
  2011年   3107篇
  2010年   2470篇
  2009年   2707篇
  2008年   2324篇
  2007年   3286篇
  2006年   3184篇
  2005年   2740篇
  2004年   2225篇
  2003年   1864篇
  2002年   1682篇
  2001年   1312篇
  2000年   1031篇
  1999年   832篇
  1998年   580篇
  1997年   477篇
  1996年   375篇
  1995年   337篇
  1994年   302篇
  1993年   246篇
  1992年   192篇
  1991年   167篇
  1990年   100篇
  1989年   66篇
  1988年   30篇
  1987年   29篇
  1986年   11篇
  1985年   9篇
  1984年   16篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   11篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1959年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   
2.
为了监测绕组变压器的静态应力场和发生短路等故障时的动态应力变化,设计了一种用于电气设备状态监测的新式FBG传感器。该传感器由聚醚醚酮材料封装的FBG构成,通过内部圆锥形空腔结构实现将轴向应力集中于FBG敏感位置。通过仿真对不同压力强度下传感器结构的应力场部分及形变趋势进行了计算与分析,论证了设计的合理性。实验分别对静态载荷和动态冲击进行测试,结果显示,在静态压载测试中,当100 N相似文献   
3.
为研制车船等壳体所用的轻质、高强复合板材,选用超高分子量聚乙烯(UHMWPE)短纤维纱,制备成单层经纬为120根/(10 cm)的平纹组织,采用多组经纱持续更替交织层的方法制成2L(1+0)型、4L(2+1)型、6L(3+2)型3种多层角联锁结构织物,采用扦插芯棒、模压成型方法制成菱形蜂窝状的热固性环氧树脂基中空板,并与2块真空吸液法制成的面板组成“三合一”复合板,同时测定了复合板材的结构特征及其平拉、平压和弯曲性能。结果表明:3种类型复合板的密度均远小于水的密度,其中6L(3+2)型最小,为0.48 g/cm3;复合板层数越多,环氧树脂越难渗透尤其是在中空板菱形交叉点处,复合板平拉、平压、抗弯曲强度则呈现递增,制成的6L(3+2)型复合板试样平压强度可达到1.03 MPa。  相似文献   
4.
Polycrystalline mullite fibers and novel zirconia-toughened mullite (ZTM) fibers with average diameters between 9.7 and 10.3 μm containing 3, 7 and 15 wt.-% tetragonal ZrO2 (ZTM3, ZTM7, ZTM15) in the final ceramic were prepared via dry spinning followed by continuous calcination and sintering in air. A shift in the formation of transient alumina phases and tetragonal ZrO2 to higher temperatures with increasing amounts of ZrO2 was observed. Concomitantly, the mullite formation temperature was lowered to 1229 °C for ZTM15 fibers. X-ray diffraction revealed formation of the desired tetragonal crystal structure of ZrO2 directly from the amorphous precursor. Room temperature Weibull strengths of 1320, 1390 and 1740 MPa and Weibull moduli of 9.5, 7.1 and 9.0 were determined for mullite, ZTM3 and ZTM15 fibers, respectively. Average Young’s moduli ranged from 190 to 220 GPa. SEM images revealed crack-free fiber surfaces and compact microstructures independent of the amount of ZrO2.  相似文献   
5.
Flexible scintillating fiber plays an important role in X-ray radiation monitoring and high-resolution medical imaging, while construction of scintillating fiber derived from the commercial material system meet with limited success. Here, we report the design and successful fabrication of the Ce-activated lutetium aluminum silicate glass, nanostructured glass, and fiber, and explore their scintillating properties. The scintillating glass with optimized composition and optical properties is determined. The crystallization behavior of lutetium aluminum silicate glass is studied and the nanostructured glass embedded with orthorhombic Lu2Si2O7 phase is successfully constructed for the first time. Importantly, the crystalline layer thickness of the nanostructured glass can be finely tuned and ~172.89% enhancement in the scintillating performance can be achieved. Furthermore, the fiber with large sized core is fabricated and its radiation response properties are tested. The results show that it exhibits high sensitivity and its scintillating emission is lineally dependent on the X-ray power, indicating the potential application for radiation detection.  相似文献   
6.
We report here the development of two computational tools PCFPS (Photonic Crystal Fiber Parameter Study) and PCFPA (Photonic Crystal Fiber Parameter Analysis), equipped with graphical user interface (GUI) for modeling of photonic crystal fiber. The tools are based on different structural parameters, and they provide characteristic analysis of the modal parameters from the structural parameters. The main feature of PCFPS is that it enables the user to find out the values of each defining modal parameter that has an immense contribution towards the manufacture of photonic crystal fiber. Additionally, PCFPA allows the user to observe the variation in the modal parameters with respect to the changes in structural parameters (such as d, Λ, d/Λ, and λ/>Λ). Besides their ease of use, these two schemes have high computational precision and adaptability, giving a novel platform to optical engineers to modulate the microstructured fibers according to their requirement.  相似文献   
7.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
8.
《Ceramics International》2021,47(24):33956-33971
Ablative composites have been in use for thermal protection of space vehicles for decades. Carbon-phenolic composites have proven to perform exceptionally well in these applications. However with development in aerospace industry their performance needs improvement. In this field, different carbon-based and ceramic additives have been introduced into ablative composite systems. This review article gives a comparative analysis of researches done in this field in the recent past. Density, ablative, thermal and mechanical properties of ablative composites with different ultra-high temperature ceramic particles i.e. ZrSi2, Cenosphere, nano-SiO2, BN etc. and carbon-based nanoparticles i.e. CNTs, nano-Diamonds, Graphene oxide etc. used as additives, have been compared and discussed. Emphasis is put on carbon-phenolic composite systems although some epoxy matrix systems have also been discussed for comparison.  相似文献   
9.
《Ceramics International》2022,48(15):21638-21647
Municipal solid waste incineration (MSWI) fly ash (FA) is a typical hazardous waste due to its high contents of toxic heavy metals, and hence its disposal has attracted global concern. In this work, it was recycled into environmental-friendly CaO–Al2O3–SiO2 system glass-ceramics via adding coal fly ash (CFA) and waste glass (WG). The effects of CaO/SiO2 ratios and sintering temperatures on the crystalline phases, morphologies, mechanical and chemical properties, heavy metals leaching and potential ecological risks of glass-ceramics were investigated. The results showed that wollastonite (CaSiO3), anorthite (CaAl2Si2O8) and gehlenite (Ca2Al2SiO7) were the dominant crystals in the glass-ceramics, which were not affected by CaO/SiO2 ratio and sintering temperature. The compressive strength increased, while the Vickers hardness and microhardness decreased as increasing the sintering temperatures from 850 to 1050 °C, which reached their maximum values of 660.69 MPa, 6.14 GPa, and 7.43 GPa, respectively. However, the increase of CaO/SiO2 ratio resulted into the reduction of the three mechanical parameters. As varying CaO/SiO2 ratio from 0.48 to 0.86, the maximum compressive strength, Vickers hardness and microhardness were 611.80 MPa, 5.43 GPa, and 6.56 GPa, respectively. Besides, all the glass-ceramics exhibited high alkali resistance of >97%. The extremely low heavy metals leaching concentrations and low potential ecological risk of glass-ceramics further revealed its environmentally friendly property and potential application feasibility.  相似文献   
10.
《Ceramics International》2022,48(9):11998-12005
In this study, basalt from a base in Hebei, China, was selected as the raw material. Water-quenched basalt glasses and basalt fibers were prepared at different homogenization times and temperatures. The water-quenched glass structure was characterized by XRD and a Raman spectrometer followed by fitting of their Raman spectra by Gaussian curves to obtain information about melt structure. The fiber performance was characterized by fiber strength meter and fiber fineness meter. The results demonstrate that homogenization time and temperature had significant effects on the structure of basalt melt. The degree of polymerization of the melt increased with increasing homogenization time and decreased with increasing homogenization temperature. The fiber strength increased with increasing the degree of polymerization. As the homogenization time and temperature increased, coefficients of variation of fiber strength and fiber diameter decreased, indicating enhanced fiber stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号