首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1694篇
  免费   268篇
  国内免费   325篇
电工技术   45篇
综合类   193篇
化学工业   354篇
金属工艺   343篇
机械仪表   174篇
建筑科学   49篇
矿业工程   50篇
能源动力   39篇
轻工业   60篇
水利工程   9篇
石油天然气   99篇
武器工业   98篇
无线电   75篇
一般工业技术   379篇
冶金工业   43篇
原子能技术   78篇
自动化技术   199篇
  2024年   44篇
  2023年   163篇
  2022年   151篇
  2021年   145篇
  2020年   102篇
  2019年   131篇
  2018年   85篇
  2017年   82篇
  2016年   66篇
  2015年   73篇
  2014年   142篇
  2013年   102篇
  2012年   131篇
  2011年   118篇
  2010年   76篇
  2009年   85篇
  2008年   79篇
  2007年   97篇
  2006年   95篇
  2005年   70篇
  2004年   57篇
  2003年   39篇
  2002年   28篇
  2001年   32篇
  2000年   20篇
  1999年   10篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1979年   1篇
  1959年   1篇
  1951年   2篇
排序方式: 共有2287条查询结果,搜索用时 15 毫秒
1.
闫士彩  李颖 《金属热处理》2020,45(9):121-124
采用显微组织分析和分子动力学模拟等方法研究了退火温度对0Cr25Al5热轧态盘条钢组织及性能的影响。结果发现,晶粒尺寸随温度的升高逐渐增加并趋于稳定,但是断后伸长率和断面收缩率在950 ℃突然大幅度下降。试样组织形貌在800 ℃和950 ℃退火温度下的OM及SEM分析结果未见明显差别。于是使用分子动力学模拟对0Cr25Al5钢三元体系的自由能进行了计算,发现随着B2结构的FeAl或者DO3结构的Fe3Al有序相尺寸的增大,系统自由能先减小后增大,其最小值随着退火温度的升高向有序相颗粒尺寸减小的方向移动。在1273 K的高温下仍然会保留60 nm左右大小的有序相颗粒。因此,推测0Cr25Al5钢在大于950 ℃的温度范围内韧性下降是由于60 nm左右的B2结构的FeAl或者DO3结构的Fe3Al有序相造成,与晶粒尺寸无关。因此,针对该钢种应进行低温退火促使基体组织回复以消除缺陷,从而抑制Fe、Al等基体原子的扩散。  相似文献   
2.
刘若华  孙伟  金娇 《矿冶工程》2018,38(1):50-53
通过矿物浮选试验、动电位测定以及吸附量测试,考察了4种淀粉抑制剂对赤铁矿和石英浮选性能的影响,并探讨了其作用机理。在碱性条件下,改性淀粉抑制剂对赤铁矿抑制效果明显,且以改性玉米淀粉效果最佳,改性磷酸酯淀粉、改性羧甲基淀粉的抑制效果次之,而普通淀粉抑制作用一般。同时4种淀粉抑制剂对主要脉石矿物石英的抑制效果均不明显。pH=10~12.5条件下,改性玉米淀粉因其羟基氧和裸露在赤铁矿表面的铁元素发生了化学键合,因而选择性抑制能力最佳。分子动力学模拟表明,改性玉米淀粉片段与赤铁矿作用更为紧密,验证了改性淀粉能更好地抑制赤铁矿。  相似文献   
3.
本文利用分子动力学方法研究了GaN在质子辐照下的损伤。对不同能量(1~10 keV)初级离位原子(PKA)引起的级联碰撞进行了研究,分析了点缺陷与PKA能量的关系、点缺陷随时间的演化规律、点缺陷的空间分布及点缺陷团簇的尺寸特征。研究结果表明,点缺陷的产生与PKA能量呈线性关系,不同类型的点缺陷随时间演化规律相似,点缺陷多产生在PKA径迹旁,点缺陷团簇多为孤立的点缺陷和小团簇。  相似文献   
4.
以羟乙基纤维素(HEC)作为水基润滑添加剂,研究面接触条件下HEC润滑液的润滑特性。采用红外光谱仪分析HEC化学组成,结合分子动力学模拟分析HEC与水分子的相互作用,采用白光干涉三维表面形貌仪测量试样的表面形貌,借助微摩擦磨损试验机(UMT-2)探究转速、载荷、质量分数对润滑液润滑特性的影响。结果表明:HEC可以与水分子形成中、高强度的氢键;转速变化在摩擦副入口处对润滑液的成膜过程产生影响,进入摩擦副的润滑膜可以保持稳定的润滑状态,摩擦因数随转速增大几乎不变;增大载荷,润滑液在摩擦副间分布更加均匀,提升润滑性能,摩擦因数随载荷增大而减小;随润滑液质量分数增大,摩擦因数先减小后增大,质量分数为1.00%时摩擦因数最小。提出羟乙基纤维素水基润滑模型,模型包括水分子层和水合羟乙基纤维素层,其中水合羟乙基纤维素层起主要作用。  相似文献   
5.
为了研究纳米抛光碳化硅时压力变化对表面的影响规律,建立了金刚石磨粒纳米抛光碳化硅的分子动力学模型,数值模拟了纳米尺度下的碳化硅抛光过程,具体分析了抛光压力线性增大过程中的配位数为1至6的原子数量的变化规律,揭示了线性改变抛光压力对被加工表面相变的影响规律,仿真结果表明:压力是诱导碳化硅相变的主要因素,当抛光压力增大时,发生相变的原子数增多,碳化硅的相变深度增加,其中配位数为1、2和4的原子数减少,配位数为3、5和6的原子数增多。  相似文献   
6.
对废弃资源石榴皮进行资源再利用,从中提取有效染色、抗菌成分,并与聚丁二酸丁二酯(PBS)复合,制备双功能性PBS/石榴皮提取物(PGL)复合材料。利用傅里叶变换红外光谱对复合材料进行了分析,采用Materials Studio软件对复合材料的界面作用进行了分子动力学模拟,探讨了PGL用量对复合材料耐摩擦色牢度、抗细菌率的影响。结果表明,PGL在共混过程中没有与PBS发生化学反应,但两者形成了静电能和氢键两种分子间非键合作用力,使得复合材料具有一定强度的界面作用。PGL质量分数为1%~7%时,复合材料的耐摩擦色牢度基本得到保持,表明PGL中的染色成分与PBS存在一定的分子间界面作用,为分子动力学模拟结果提供了证明。PGL质量分数为1%时,复合材料对金黄色葡萄球菌及大肠杆菌的抗细菌率均达到了90%以上,具有了抗菌能力;随着PGL用量的增加,复合材料的抗菌能力逐渐提高,当PGL质量分数超过7%后,复合材料对两种细菌的抗细菌率均达到99%以上,具有强抗菌作用。  相似文献   
7.
王浩  高杰  陶俊  罗一鸣  蒋秋黎 《含能材料》2019,27(11):897-901
为了研究3,4–二硝基呋咱基氧化呋咱(DNTF)与5,5'-联四唑-1,1'-二氧二羟胺(HATO)混合炸药安全性能,对DNTF临界直径和不同比例的DNTF/HATO混合体系的撞击感度、摩擦感度、冲击波感度、热感度的变化规律进行了研究。结果表明:DNTF单质炸药临界直径约为0.2 mm。当HATO的含量小于等于55%时,混合体系的特性落高随HATO含量的增加线性增加;摩擦感度随HATO含量的增加线性减小。混合体系的冲击波感度在HATO含量小于等于50%时与DNTF相当,当HATO含量达到55%时有所改善,隔板值G50降低5 mm左右。DNTF和HATO混合后,HATO的热分解温度会由243.7℃降低到230℃左右。采用Dreiding力场对DNTF/HATO混体系分子动力学模拟得到,随着HATO含量的增加,DNTF分子中五元环与NO_2相连的C—N键、五元环中的C—O键的键长呈现下降的趋势,说明DNTF、HATO形成混合体系后,结构稳定性有所提高。  相似文献   
8.
梁晋洁  高宁  李玉红 《金属学报》2020,56(9):1286-1294
采用分子动力学方法,在原子尺度详细研究了bcc结构Fe中间隙型位错环与微裂纹之间的相互作用过程。模拟结果表明,二者之间的相对距离、裂纹开裂斜率、位错环尺寸以及是否存在自由表面,都对二者的相互作用过程及最终形成的微观结构具有重要的影响。在不同条件下,辐照形成的间隙型位错环与微裂纹的相互作用会形成复杂的辐照缺陷结构、位错环被微裂纹吸收,或者造成裂纹尖端凹凸不平,这些均会对微裂纹的开裂及扩展产生影响,研究结果为理解辐照过程提供一种可能的解释。  相似文献   
9.
10.
李源才  江五贵  周宇 《金属学报》2020,56(5):785-794
选取含质量分数为5.22‰碳纳米管(CNT)为代表,通过分子动力学(MD)研究了温度对纳米蜂窝镍(NNHC)和CNT增强纳米蜂窝镍(CRNNHC)在径向拉伸、径向压缩、轴向拉伸和轴向压缩下力学性能的影响。结果表明,NNHC和CRNNHC的弹性模量(E)和最终应力(σu)对温度较为敏感,都随温度升高呈近似线性下降。相比于NNHC,不同温度下CNT的添加对CRNNHC径向力学性能的增强效果并不明显,而对其轴向力学性能则起到了良好的增强作用。CRNNHC轴向拉伸与压缩时的弹性模量提升幅值分别为6.4%~10%与9%~12%,最终应力提升幅值分别为1.5%~5.3%与10%~14%。研究表明,不同温度下CRNNHC沿轴向变形的力学性能普遍要优于沿径向变形的力学性能,也预示着轴向变形时CNT被破坏前吸收的能量相对较多。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号