首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2504篇
  免费   208篇
  国内免费   120篇
电工技术   34篇
综合类   169篇
化学工业   771篇
金属工艺   44篇
机械仪表   233篇
建筑科学   92篇
矿业工程   68篇
能源动力   177篇
轻工业   54篇
水利工程   109篇
石油天然气   442篇
武器工业   12篇
无线电   53篇
一般工业技术   384篇
冶金工业   24篇
原子能技术   27篇
自动化技术   139篇
  2024年   4篇
  2023年   30篇
  2022年   34篇
  2021年   62篇
  2020年   49篇
  2019年   53篇
  2018年   71篇
  2017年   47篇
  2016年   60篇
  2015年   80篇
  2014年   119篇
  2013年   167篇
  2012年   136篇
  2011年   161篇
  2010年   124篇
  2009年   145篇
  2008年   116篇
  2007年   173篇
  2006年   165篇
  2005年   149篇
  2004年   150篇
  2003年   119篇
  2002年   84篇
  2001年   87篇
  2000年   51篇
  1999年   57篇
  1998年   59篇
  1997年   44篇
  1996年   42篇
  1995年   30篇
  1994年   29篇
  1993年   24篇
  1992年   21篇
  1991年   16篇
  1990年   12篇
  1989年   19篇
  1988年   11篇
  1987年   7篇
  1986年   10篇
  1985年   1篇
  1984年   5篇
  1983年   5篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
  1951年   1篇
排序方式: 共有2832条查询结果,搜索用时 15 毫秒
1.
The SAFT-γ Mie group-contribution equation of state is used to represent the fluid-phase behavior of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclic methine-amine groups (cCHNH, cCHN) with water (H2O). The group-interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group-contribution nature of the method, one can describe the fluid-phase behavior of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid–liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with the SAFT-γ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapor–liquid, liquid–liquid, and vapor–liquid–liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid-phase behavior.  相似文献   
2.
When a laser beam induces surface tension gradient at the free surface of a liquid, a weak surface depression is expected and has been observed. Here we report giant depression and rupture in “optothermocapillary fluids” under the illumination of laser and sunlight. Computational fluid dynamics models were developed to understand the surface deformation and provided desirable physical parameters of the fluid for maximum deformation. New optothermocapillary fluids were created by mixing transparent lamp oil with different candle dyes. They can be cut open by sunlight and be patterned to different shapes and sizes using an ordinary laser show projector or a common laser pointer. Laser driving and elevation of optothermocapillary fluids, in addition to the manipulation of different droplets on their surface, were demonstrated as an efficient controlling method and platform for optofluidic operations. The fundamental understanding of light-induced giant depression and creation of new optothermocapillary fluids encourage the fundamental research and applications of optofluidics.  相似文献   
3.
4.
The influence of viscoelastic flow properties on fluid dynamics using radial impellers is investigated. The use of transparent model fluids allows for the optical measurement of general flow behavior with a fluorescence dying technique. By varying viscoelastic flow properties, size of agitators and rotational frequency, the impact of these parameters on fluid dynamics is analyzed. Toroidally shaped, cavern‐like flow compartments form around the agitators in all fluids in specific rotational frequency ranges, preventing an efficient mixing. By balancing elastic with centrifugal forces, a simple model is developed with which compartment sizes can be predicted with good accuracy. The results indicate a good suitability of the elasticity number as a scale‐up criterion.  相似文献   
5.
In this study, the analysis of nonlinear stability with viscoelastic ferromagnetic fluids as working media is performed by finite-amplitude perturbations. The solution of the resulting nonautonomous system of the Lorenz model (generalized Khayat–Lorenz model of four modes) is obtained numerically to measure the amount of heat transport. The effects of elastic parameters, Prandtl number, modulation parameters, buoyancy magnetic parameter, and nonbuoyancy magnetic parameter on heat transport are studied. Heat transport is quantified through the average Nusselt number, which is determined by solving the scaled Lorenz model. As limiting cases of the study, the results of Newtonian, Maxwell, Rivlin–Ericksen fluids are determined. The results obtained have been presented graphically.  相似文献   
6.
7.
The development of Jacobian-free software for solving problems formulated by nonlinear partial differential equations is of increasing interest to simulate practical engineering processes. For the first time, this work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation of flows in porous media. The model considered here is the one employed to describe the displacement of miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid mixture varies exponentially with the pressure. This spectral algorithm is a modern method for solving large-scale nonlinear systems, which does not use any explicit information associated with the Jacobin matrix of the considered system, being a Jacobian-free approach. Two dimensional problems are presented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable and efficient method for simulation of compressible flows in porous media.  相似文献   
8.
Solvent mass transfer plays a key role in a thermal gravity drainage process involving solvent. The diffusion coefficients of solvent in such a process are not well studied. This article presents the effective diffusion coefficients of solvent in bitumen-saturated sands under high temperature/pressure conditions measured using a CT scanning technique. Experimental results show that the effective diffusion coefficient of n-hexane in bitumen-saturated sands varied with the solvent concentration or with the viscosity of solvent–bitumen mixture (i.e., Dec0.4 or Deμm−0.46). The solvent concentration weighted diffusion coefficient of n-hexane in the bitumen under the condition 160–170°C/1,900 kPa had an order of magnitude of about 10−5 cm2/s for solvent volume concentration less than 0.2. The penetration distance of n-hexane in bitumen-saturated sands depended on the nonlinearity of diffusion and had a value of −2 cm after 1-day diffusion. The stronger the nonlinearity of diffusion, the shorter the penetration distance.  相似文献   
9.
The present work delineates the hydrodynamics and thermal characteristics due to mixed convection in the liddriven semi-circular cavity affected by the presence of the adiabatic block at its geometric center for twodimensional, steady-state, laminar and for non-Newtonian power-law fluids. The semi-circular cavity has a diameter of D. The horizontal wall/lid is sliding with a uniform horizontal velocity(u = U) and is subjugated to the ambient thermal condition; while the curved surface is subjugated to a higher isothermal temperature.The convective characteristics inside the system is explored for the broad range of Richardson number(0.1 ≤Ri ≤ 10), Prandtl number(1 ≤ Pr ≤ 100) and non-Newtonian power-law index(0.5 ≤ n ≤ 1.5) at a constant Grashof number of 10~4. Apart from this, the effect of shape(cross-section) of the inserted block, i.e., circular, square and triangular on heat transfer characteristics has also been explored. It is observed that the shear thickening fluids display better cooling characteristics. Besides, the cavity with immersed triangular block shows better heat transfer results than the circular and square blocks. The deviations observed in the flow and heat transfer characteristics in the cavity by inserting an adiabatic block as compared with cavity without block have been ascertained by calculating normalized Nusselt number(Nu~N). The presence of the block was found to have a diminishing effect on the heat transfer due to convection in the cavity. In the end, the results of the study are summarized in the form of a predictive correlation exhibiting the functional dependence of average Nusselt number with Prandtl number, power-law index, and Richardson number.  相似文献   
10.
针对65号航空冷却液在过滤循环中出现泡沫较多的现象,对65号航空冷却液泡沫倾向性进行探究。按照石化行业标准《发动机冷却液泡沫倾向测定法(SH /T 0066-2002)》,利用冷却液泡沫倾向测定仪来评价65号航空冷却液泡沫倾向性,并进行水乙二醇溶液对照试验。结果表明,航空冷却液在低温和循环时间较长的情况下,其泡沫倾向性较大,而随着温度的升高和循环时间的缩短,泡沫倾向性有一定程度的改善;并且通过水乙二醇对照试验可知,冷却液的基础液泡沫倾向性较小。航空冷却液在过滤循环中出现的泡沫问题,是加入的添加剂所引起的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号