首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43526篇
  免费   4841篇
  国内免费   2937篇
电工技术   13443篇
综合类   3047篇
化学工业   4561篇
金属工艺   3987篇
机械仪表   2068篇
建筑科学   1197篇
矿业工程   791篇
能源动力   1762篇
轻工业   583篇
水利工程   1049篇
石油天然气   962篇
武器工业   261篇
无线电   6343篇
一般工业技术   6360篇
冶金工业   1237篇
原子能技术   824篇
自动化技术   2829篇
  2024年   74篇
  2023年   646篇
  2022年   872篇
  2021年   1211篇
  2020年   1316篇
  2019年   1135篇
  2018年   1094篇
  2017年   1604篇
  2016年   1638篇
  2015年   1787篇
  2014年   2550篇
  2013年   2530篇
  2012年   3214篇
  2011年   3730篇
  2010年   2808篇
  2009年   3006篇
  2008年   2778篇
  2007年   3282篇
  2006年   2921篇
  2005年   2301篇
  2004年   1932篇
  2003年   1606篇
  2002年   1250篇
  2001年   1068篇
  2000年   951篇
  1999年   720篇
  1998年   611篇
  1997年   483篇
  1996年   455篇
  1995年   410篇
  1994年   299篇
  1993年   207篇
  1992年   185篇
  1991年   142篇
  1990年   107篇
  1989年   93篇
  1988年   59篇
  1987年   47篇
  1986年   37篇
  1985年   30篇
  1984年   29篇
  1983年   25篇
  1982年   16篇
  1981年   15篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1974年   2篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
2.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
3.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
4.
5.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
6.
Metal–organic framework (MOF) membranes are promising for efficient separation applications. However, the uncontrollable pathways at atomic level impede the further development of these membranes for molecular separation. Herein we show that vapor linker exchange can induce partial amorphization of MOF membranes and then reduce their transport pathways for precisely molecular sieving. Through exchanging MOF linkers by incoming ones with similar topology but higher acidity, the resulted metal-linker bonds with lower strength cause the transformation of MOF membranes from order to disorder/amorphous. The linker exchange and partial amorphization can narrow intrinsic apertures and conglutinate grain boundary/crack defects of membranes. Because of the formation of ultra-microporous amorphous phase, the MOF composite membrane shows competitive H2/CO2 selectivity up to 2400, which is about two orders of magnitude higher than that of conventional MOF membranes, accompanied by high H2 permeance of 13.4 × 10−8 mol m−2 s−1 Pa−1 and good reproducibility and stability.  相似文献   
7.
《Ceramics International》2022,48(18):26378-26386
In this work different lead-free multilayered structures, composed of perovskite BaTiO3 and spinel NiFe2O4 thin layers, were obtained by solution deposition method. Structural characterization of the sintered thin films confirmed the well-defined layered structure with overall thickness from 160 to 600 nm, crystalline nature of perovskite BaTiO3 and spinel NiFe2O4 phases without secondary phases (after sintering below 900 °C) and grains on nanometer scale. Dielectric properties of the multiferroic multilayer BaTiO3/NiFe2O4 thin films were analyzed in temperature and frequency range from 30 °C to 200 °C and 100 Hz to 1 MHz, respectively. In comparison to the pure BaTiO3 films, the introduction of ferrite layer reduces dielectric response and increases low frequency permittivity dispersion of the multilayer thin films. The multilayer samples have shown relatively low dielectric loss with stronger contribution of conductivity at higher temperatures, and characteristic broad peak representing “relaxation” of the interface charge accumulation.  相似文献   
8.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号