首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10128篇
  免费   1638篇
  国内免费   1871篇
电工技术   371篇
综合类   728篇
化学工业   1870篇
金属工艺   780篇
机械仪表   852篇
建筑科学   387篇
矿业工程   331篇
能源动力   442篇
轻工业   283篇
水利工程   41篇
石油天然气   100篇
武器工业   1430篇
无线电   1633篇
一般工业技术   1657篇
冶金工业   161篇
原子能技术   1242篇
自动化技术   1329篇
  2024年   21篇
  2023年   328篇
  2022年   380篇
  2021年   446篇
  2020年   515篇
  2019年   359篇
  2018年   390篇
  2017年   496篇
  2016年   544篇
  2015年   431篇
  2014年   854篇
  2013年   972篇
  2012年   1459篇
  2011年   1310篇
  2010年   1015篇
  2009年   1006篇
  2008年   468篇
  2007年   843篇
  2006年   852篇
  2005年   321篇
  2004年   138篇
  2003年   103篇
  2002年   98篇
  2001年   81篇
  2000年   84篇
  1999年   64篇
  1998年   14篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1959年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Seawater is the most abundant resource on earth, so developing cost-effective, highly durable corrosion resistance and efficient electrocatalysts are crucial to enhance seawater splitting. Herein, we prepared 3D bristlegrass-like Co-doped Ni2P (Co-Ni2P) composites supported on Ni foam (NF) through a facile solvothermal method combined and a subsequent phosphatization treatment. Benefiting from the unique structure, Co-Ni2P shows excellent electrocatalytic activity as an electrode material for both the hydrogen evolution reaction (HER, low overpotential of 116 mV at 50 mA cm?2) and oxygen evolution reaction (OER, low overpotential of 266 mV at 50 mA cm?2). Moreover, the as-prepared Co-Ni2P composites exhibit excellent stability and corrosion resistance in an alkaline medium. Density functional theory (DFT) calculations were employed to evaluate the H1 adsorption of Co-Ni2P, and the results proved the high catalytic activity for the HER. This study provides new materials with a unique morphology for overall water splitting.  相似文献   
2.
3.
《Ceramics International》2021,47(23):32641-32647
Multi-components and equimolar rare earth monosilicates, (Y1/3Dy1/3Er1/3)2SiO5, (Y1/3Dy1/3Lu1/3)2SiO5, (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5, were prepared by solid-state reactions and the following hot-pressing. Dense microstructures with uniform elemental distributions were obtained for all samples. These investigated multi-components monosilicates exhibit low thermal conductivities and similar coefficients of thermal expansion with SiC. Moreover, they exhibit high corrosion resistances in 1400 °C water vapor, especially, four-components (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5 experienced almost invariable weights after small weight losses during the initial 0.5 h. All those results indicate that multi-components rare earth monosilicates are promising candidates of environmental barrier coatings for SiC/SiC composites.  相似文献   
4.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
5.
《Ceramics International》2022,48(7):9658-9666
Polycrystalline Nd:YAG materials have wide applications in solid-state lasers. In this study, micro hole drilling experiments were performed on polycrystalline Nd:YAG using a polycrystalline diamond micro drill. The hole diameter, edge chipping, and hole wall surface quality were examined in detail. The results showed that the hole diameter was slightly larger than tool diameter. A diameter error of less than 5.5% was achieved. The edge chipping at the entry hole was formed by the encircled petal shape exfoliations, which were produced by the indentation and rotation movement in the drilling entry stage. Edge chipping at the exit hole was generated by an entire piece of exfoliation, which was produced by a circle of microcracks around the tool tip propagating to the bottom surface in the drilling exit stage. The edge chipping width at the entry hole was smaller than that at the exit hole. Based on different material removal modes, the hole surface morphology was classified into three types: ductile removal, coexisting ductile and brittle removal, and brittle removal. The hole surface quality mainly depended on the proportion of the brittle fracture to ductile removal surface.  相似文献   
6.
为满足超高速撞击典型Whipple防护构型的损伤评估需求,利用图像处理技术对碎片云序列阴影图像进行深入研究。使用超高速序列激光阴影成像仪得到三组不同实验条件下碎片云发展过程的高清阴影图像,分别对每组最具代表性的2帧进行图像处理分析;根据碎片云图像特点以及碎片运动特性,提出了一种改进的碎片二次特征匹配算法,该方法包含碎片粗定位、特征定义及初匹配和精确匹配三步策略;通过运用改进的匹配算法,对选取的相邻两帧图片完成碎片高效匹配,并提取匹配碎片的运动参数,进而分析碎片的速度分布和飞行角度分布,获取二次碎片云相关运动特性;得到三组实验各自的轨迹模拟图。根据得到的轨迹分析结果分别对三组实验的后板损伤进行估计,并通过与防护构型的实际损伤结果进行比较,验证了该方法的有效性。  相似文献   
7.
《Ceramics International》2022,48(1):656-664
Formation of p-n junction was an effective method to improve the photocatalytic performance due to its built-in electric field. However, the electric field was distributed only on the interface between two semiconductors, which was insufficient in comparison to the entire material. In this work, a multilayer TiO2–CoTiO3 p-n junction was designed and fabricated by atomic layer deposition. The charge transport and photoelectrochemical properties of multilayer TiO2–CoTiO3 films of various thicknesses are thoroughly investigated. The PL and electrochemical tests demonstrate that TiO2–CoTiO3 exhibits enhanced charge separation and transport. Additionally, the extra visible light response was achieved by introduction of CoTiO3. Also, theoretical calculations indicate that the electrons prefer to immigrate from TiO2 to CoTiO3 in a multilayer TiO2–CoTiO3 structure. Benefited from the boosted light absorption and charge transfer, the multilayer TiO2–CoTiO3 composite film exhibits a significantly increased photocurrent, much higher than pure TiO2 and a single TiO2–CoO p-n junction. This multilayer p-n junction structure opens a rational and novel way for nanostructure construction in the energy conversion region.  相似文献   
8.
《Ceramics International》2022,48(8):10412-10419
Dense nickel-zinc (NiZn) ferrite ceramics were successfully fabricated within tens of seconds via spark plasma sintering. The phase composition and microstructure of the sintered samples were characterized by X-ray diffraction and scanning electron microscopy, respectively. The static magnetic properties at room temperature and Curie temperature of the samples were investigated by vibrating sample magnetometry. The results indicated that the main phase of the sintered samples was Ni0.75Zn0.25Fe2O4 with spinal structure, and the sintering temperature and heating rate observably affected the microstructure and density, then the magnetic properties of the sample. The Joule heat generated by NiZn ferrite during spark plasma sintering was very important for the rapid preparation of the sample with high density and small grain size. The low sintering temperature and heating rate would be helpful to obtain samples with small grain size, high density, and then good magnetic properties. The samples sintered at 900 °C with the heating rate of 5–10 °C/s were characterized of the relative density above 95%, 4πMs value beyond 4000 Gs and coercivity below 27.7 Oe.  相似文献   
9.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   
10.
化学强化是一种玻璃机械强度增强方法,适用于异型、超薄、高碱、高膨胀玻璃增强,因新型超薄显示产品的屏幕保护玻璃发展需要,化学强化技术重新在碱铝硅酸盐玻璃品种掀起研究热潮。本文对化学强化本质及铝硅酸盐玻璃在屏幕保护玻璃应用进行了回顾,基于玻璃化学强化的高CS、DOL和低CT诉求,归纳总结了关键影响因素,第1,碱铝硅酸盐玻璃的成分及结构是基础,氧化铝有利玻璃网络孔隙增大创造交换通道,氧化钠或氧化锂是离子交换关键物质;第2,对于玻璃组成和结构设计,要求玻璃网络键合度R=O/Si或O/(Si+Al)满足2.15~2.40,碱金属氧化物质量分数大于13%且膨胀系数大于6×10^-6/℃;第3,在化学强化工艺方面,化学强化温度决定离子扩散系数,化学强化时间决定DOL,一步法仅能获得相对较大的CS,而DOL不很理想,只有两种离子参与交换的二步法才有利于CS和DOL同步提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号