首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2760篇
  免费   141篇
  国内免费   233篇
电工技术   23篇
综合类   14篇
化学工业   659篇
金属工艺   212篇
机械仪表   53篇
建筑科学   20篇
矿业工程   11篇
能源动力   267篇
轻工业   15篇
水利工程   11篇
石油天然气   5篇
无线电   273篇
一般工业技术   611篇
冶金工业   46篇
原子能技术   779篇
自动化技术   135篇
  2024年   4篇
  2023年   136篇
  2022年   65篇
  2021年   99篇
  2020年   160篇
  2019年   155篇
  2018年   88篇
  2017年   210篇
  2016年   197篇
  2015年   191篇
  2014年   221篇
  2013年   181篇
  2012年   211篇
  2011年   152篇
  2010年   114篇
  2009年   160篇
  2008年   78篇
  2007年   166篇
  2006年   189篇
  2005年   79篇
  2004年   41篇
  2003年   31篇
  2002年   50篇
  2001年   61篇
  2000年   27篇
  1999年   48篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
  1959年   8篇
排序方式: 共有3134条查询结果,搜索用时 15 毫秒
1.
2.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
3.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
4.
Despite long-term efforts for exploring antibacterial agents or drugs, potentiating antibacterial activity and meanwhile minimizing toxicity to the environment remains a challenge. Here, it is experimentally shown that the functionality of reduced graphene oxide (rGO) through copper ions displays selective antibacterial activity that is significantly stronger than that of rGO itself and no toxicity to mammalian cells. Remarkably, this antibacterial activity is two-orders-of-magnitude greater than the activity of its surrounding copper ions. It is demonstrated that rGO is functionalized through the cation–π interaction to massively adsorb copper ions to form a rGO–copper composite and result in an extremely low concentration level of surrounding copper ions (less than ≈0.5 µm ). These copper ions on rGO are positively charged and strongly interact with negatively charged bacterial cells to selectively achieve antibacterial activity, while rGO exhibits the functionality to not only actuate rapid delivery of copper ions and massive assembly onto bacterial cells but also result in the valence shift in the copper ions from Cu2+ into Cu+, which greatly enhances the antibacterial activity. Notably, this rGO functionality through cation–π interaction with copper ions can similarly achieve algaecidal activity but does not exert cytotoxicity against neutrally charged mammalian cells.  相似文献   
5.
Optimization of materials exhibiting high-temperature superconductivity for producing controllable nano-devices is crucial for industrial applications. Herein we report a comprehensive study of the diffusion process between YBa2Cu3O7−δ (YBCO) and iron particles. Fe diffusion into the YBCO matrix could be fundamental for multilayer systems with YBCO/Fe-alloy interfaces. We have found that the orthorhombic YBCO structure adopts to 3 wt% Fe, while for higher Fe content, a formation of BaFeO3−δ and iron oxides was observed. Complementary measurements confirmed the strong superconductivity suppression in YBCO-Fe materials containing more than 7 wt% Fe. The YBCO with diffused Fe material retain the unit cell orthorhombicity (max. 3 wt% Fe), and their superconducting properties follow the principle of critical scaling with different exponents (γ). The critical current density (Jc), pinning fields (HP) exhibit γ = 1, the first critical field (Hc1) shows γ = 1/2, and critical temperature (Tc) demonstrates γ = 7/4.  相似文献   
6.
7.
For the successful application of boundary lubrication, detailed investigations about the influence of preparation process on molecular films are needed. In this paper, a specially designed device was used for the film preparation. The scanning electron microscope (SEM) combined with atomic force microscope (AFM) was employed to characterize the surface morphology and nanotribological behavior of molecular films. After the liquid phase deposition, molecular films are randomly and densely distributed over Ti-doped diamond-like carbon (Ti-DLC) substrates. Through rigorous surface treatments, island-like molecular films were finally achieved on substrate surfaces. The surface friction of molecular films is obviously lower than that of Ti-DLC surfaces. Then, pin-on-disk tribotests were performed to study the macrofriction behavior of molecular films under different preparation parameters. Based on the orthogonal experiment, the effect of five preparation parameters (solution weight percent, smearing force and processing time of three smearing steps) on initial friction coefficient of molecular films was investigated. The results indicated that the order of significance levels is as follows: processing time of the second smearing step > solution weight percent > processing time of step 1 > processing time of step 3 > smearing force. For the purpose of friction reduction, the appropriate level ranges are 0.75% (Solution), 2.5 N–15 N (Force), 1 min–10 min (Step 1), 1 min–2 min (Step 2) and 1 min, 2 min, 5 min and 15 min (Step 3). The initial friction coefficient under the optimized conditions is around 0.112, and the equilibrium friction coefficient is around 0.162, which is lower than that of unlubricated Ti-DLC substrates.  相似文献   
8.
Large transduction coefficient (d33×g33) is difficult to obtain in piezoelectric ceramics because these two parameters show opposite trends with compositional modifications. Herein, the Pb(Zr0.53Ti0.47)O3 ceramic powders were calcinated under different temperatures (A:830 °C, B:860 °C, and C:890 °C), and then mixed together according to different weight ratios (1A:1B:1C, 1A:2B:1C, 1A:2B:3C and 3A:2B:1C) for ceramics preparation. Both d33 and g33 are improved successfully, and the transduction coefficient with the weight ratio of 1A:2B:3C reaches up to 17,500 × 10−15 m2/N, which is 60 % higher than that with the powders calcinated under 830 °C, and at least twice those of commercial PZT-4, PZT-5A and PZT-8 ceramics. The improved transduction coefficient is owing to the enhanced piezoelectric constant and spontaneous polarization resulted from the increased grain size, relative density and the fraction of tetragonal phase. These results indicate that this is a simple but effective way to tailor the transduction coefficient in piezoelectric ceramics.  相似文献   
9.
《Ceramics International》2020,46(6):7388-7395
In this study, the effect of ZnO seed layer on the growth of uniform CdS nanostructures was investigated using chemical bath deposition technique. Besides, the influence of molar concentration of reagents on the surface morphology, structural and optoelectrical properties of the deposited CdS thin films were examined. The CdS nanostructures were grown on bare glass and ZnO/glass substrates with different reagent molar concentrations. The results indicated an improvement in the homogeneity and uniformity of the grown CdS nanostructures on ZnO seed layer which can be due to the low lattice mismatch between ZnO and CdS structures. The CdS/ZnO samples were optimized by changing the molar concentration of reagents. A three–dimensional intersecting vertical nanosheet morphology with hexagonal structure was obtained when modified chemical concentration of 0.5 M was applied. The XRD pattern of CdS nanosheets indicated the hexagonal phase of CdS which were strongly orientated along (002) plane. The elevated intensity of dominant peak related to this sample confirmed the improved crystal quality of this CdS nanostructure comparing to the other samples. The UV–Vis spectrum demonstrated a high absorption coefficient for CdS intersecting nanosheets which might be due to the high specific surface area and light trapping behavior of this sample. The photoluminescence study also showed an improvement in optical properties of optimized CdS nanostructures. In order to study the optoelectrical properties of CdS nanostructures, metal–semiconductor–metal photodetectors were fabricated with different CdS samples and their current–voltage characteristics were analyzed. The results indicated an enhancement in photosensitivity, responsivity, and speed of photodetectors based on optimized CdS nanostructures.  相似文献   
10.
Single crystal sapphire was synthesized by chemical transport of Al-O generated by the reaction of polycrystalline Al2O3 ceramic and carbon. Using C-axis oriented polycrystalline Al2O3 ceramics as a seed crystal in the deposition temperature range, a C-axis sapphire crystal (Φ5xL35 mm) was grown at a temperature range of 700–1000 °C, and the growth rate in the C-axis direction was about 3.5 mm/h. The transmittance in the visible to infrared region of the synthesized sapphire is a theoretical value (transmission loss is lower than 0.1 %/cm), and the absorption edge was less than 200 nm (the band gap is 6.2 eV), which is shorter than the absorption edge (240 nm) of the commercially available single crystal (band gap 5.2 eV) synthesized by the Czochralski method. The dislocation density in this material was extremely low, and it was confirmed by lattice image observation that it was a high-quality single crystal with very few defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号