首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44307篇
  免费   3559篇
  国内免费   2693篇
电工技术   2681篇
综合类   2751篇
化学工业   4737篇
金属工艺   1306篇
机械仪表   3231篇
建筑科学   2558篇
矿业工程   1360篇
能源动力   587篇
轻工业   4984篇
水利工程   1239篇
石油天然气   1288篇
武器工业   348篇
无线电   12146篇
一般工业技术   3710篇
冶金工业   1697篇
原子能技术   472篇
自动化技术   5464篇
  2024年   201篇
  2023年   966篇
  2022年   979篇
  2021年   1117篇
  2020年   1264篇
  2019年   1351篇
  2018年   713篇
  2017年   977篇
  2016年   1228篇
  2015年   1657篇
  2014年   3302篇
  2013年   2137篇
  2012年   2846篇
  2011年   2791篇
  2010年   2539篇
  2009年   3052篇
  2008年   4664篇
  2007年   3588篇
  2006年   2637篇
  2005年   2714篇
  2004年   1690篇
  2003年   1113篇
  2002年   860篇
  2001年   832篇
  2000年   694篇
  1999年   604篇
  1998年   569篇
  1997年   505篇
  1996年   516篇
  1995年   422篇
  1994年   337篇
  1993年   295篇
  1992年   301篇
  1991年   303篇
  1990年   282篇
  1989年   259篇
  1988年   51篇
  1987年   48篇
  1986年   41篇
  1985年   17篇
  1984年   21篇
  1983年   28篇
  1982年   20篇
  1981年   16篇
  1980年   6篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
周祖濂 《衡器》2022,(10):34-37
传感器的技术参数Vmin和Y是使用衡器的重要参数。它不仅决定了传感器最大分度数(最高分辨率),同时也决定了传感器的最小使用分度数(即最小量程范围)。  相似文献   
3.
王雨润  官莉 《红外与激光工程》2022,51(9):20210838-1-20210838-12
评估星载红外高光谱仪器观测资料的质量可以推进其在数值天气预报中的应用。使用2020 年 7 月 FY-4A 红外高光谱干涉式大气垂直探测仪 (Geostationary Interferometric Infrared Sounder, GIIRS)观测数据,分析GIIRS所有通道观测噪声随视场和纬度的变化、偏差 (观测亮温与辐射传输模式模拟亮温的差) 随时间、视场、纬度和天顶角的分布来评估 GIIRS 观测资料质量。研究结果表明:波段727.5~733.8 cm?1、1107.5~1130 cm?1和1650~1776.9 cm?1的观测噪声超出仪器灵敏度设计指标,且这些通道的偏差和偏差标准差明显大于其他通道;除了长波观测噪声大的通道外,其余通道噪声等效温差NEdT在32×4阵列上均呈“中间小,两边大”的特征,且NEdT的分布不随纬度带和FOR阵列而改变,在进行GIIRS资料同化或变分反演时,其观测误差只用考虑不同通道在32×4阵列内的NEdT分布;由于数值预报模式的地表温度在白天时值偏低,使得模拟辐射量偏低,造成偏差绝对值减小,使偏差有明显的日变化;中波通道偏差特征基本不随32×4面阵的列而改变,主要与阵列中的行有关,在中波通道进行偏差订正时可以针对32×4面阵中行开展,基本不需要纬度带和卫星天顶角的订正。  相似文献   
4.
针对高帧频、全局曝光和光谱平坦等成像应用需求,设计了一款高光谱成像用CMOS图像传感器。其光敏元采用PN型光电二极管,读出电路采用5T像素结构。采用列读出电路以及高速多通道模拟信号并行读出的设计方案来获得低像素固定图像噪声(FPN)和非均匀性抑制。芯片采用ASMC 0.35μm三层金属两层多晶硅标准CMOS工艺流片,为了抑制光电二极管的光谱干涉效应,后续进行了光谱平坦化VAE特殊工艺,并对器件的光电性能进行了测试评估。电路测试结果符合理论设计预期,成像效果良好,像素具备积分可调和全局快门功能,最终实现的像素规模为512×256,像元尺寸为30μm×30μm,最大满阱电子为400 ke^(-),FPN小于0.2%,动态范围为72 dB,帧频为450 f/s,相邻10 nm波段范围内量子效率相差小于10%,可满足高光谱成像系统对CMOS成像器件的要求。  相似文献   
5.
半导体功率器件(即电力电子器件)是电力电子技术的三大核心基础之一,被比作电力电子装置的“CPU”。现有功率器件多采用Si基或SOI基,但是受限于自身材料特性的影响,在节能与转换效率方面越来越显示出他们的局限性。为解决上述问题,半导体功率器件除了继续对传统器件进行新理论和新结构的创新研究外,也正在遵循“一代材料、一代器件、一代装置、一代应用”的发展趋势,从传统的Si基和SOI基向宽禁带半导体SiC和GaN基进行扩展和延伸。  相似文献   
6.
杨光友  刘威宏 《激光杂志》2022,43(4):109-113
针对一般超光谱遥感图像的压缩方法无法同时实现图像信息缩减和图像完整性的问题,提出一种机器学习理论的超光谱遥感图像无损压缩方法。利用机器学习中的聚类算法进行第一次压缩,减少超光谱遥感图像中的冗余波段光谱,并降低图像维度;再利用机器学习中的人工神经网络进行第二次压缩,将不同图像子块送入不同压缩率的神经元当中,通过隐含层自主完成图像压缩编码。通过与四种一般压缩方法的对比验证,本方法图像压缩后,图像压缩率更小,图像分辨率和信息熵更高,既有效地减少了图像信息量,能够保留有效关键信息,达到了图像信息缩减和图像完整性的双重目标。  相似文献   
7.
8.
吕嘉明 《红外与激光工程》2021,50(2):20210038-1-20210038-5
利伐沙班是一种新型口服抗凝药,它具有疗效确切、安全性好、使用方便等优点,所以经常用于静脉血栓栓塞性疾病的预防与治疗,以及非瓣膜性房颤的卒中预防。由于利伐沙班在患者体内的浓度会影响其对凝血因子Xa的抑制作用,这导致患者的临床反应有个体差异,影响最终治疗效果。为了更加合理地使用利伐沙班,临床上需要监测人体血液或尿液中利伐沙班的浓度。针对该临床需求,文中基于远红外指纹谱和拉曼特征谱在物质有效识别和定量分析的优势,采用傅里叶变换红外光谱仪和激光共聚焦拉曼光谱系统,针对液体状态下利伐沙班进行识别并定量检测。文中先通过傅里叶变换红外光谱仪检测利伐沙班的远红外吸收谱随其浓度发生的变化,再通过激光共聚焦拉曼光谱系统检测了利伐沙班的拉曼光谱随其浓度发生的变化,最后比较了远红外光谱法与拉曼法的准确率。经过比较,远红外检测的精度比拉曼光谱检测的精度提升2倍。这些结果对临床医学中利伐沙班的使用具有重要意义。  相似文献   
9.
为表彰在热处理行业技术创新和成果应用工作中做出突出贡献的单位和个人,鼓励热处理行业企事业单位和广大科技工作者的积极性和创造性,促进热处理行业技术进步,推动热处理行业高质量发展,中国热协根据《热处理行业技术进步奖评定办法》,在全行业开展2022年度"热处理行业技术进步奖"推荐申报工作。一、申报范围及要求1)热处理企事业单位开发的各类热处理工艺技术、工艺装备、辅助配套设备、工艺材料、测试技术、安全生产技术、管理技术.  相似文献   
10.
《Planning》2018,(2)
为了分析辽东湾有色可溶性有机物(Chromophoric dissolved organic matter,CDOM)的分布特征,于2015年4月14日—5月3日采用"走航式"测量方法,分别获取了辽东湾海域32个站位表层、5、10 m 3个不同深度水层的CDOM荧光图谱、吸收系数和石油物质含量等数据。结果表明:表层(0 m)CDOM的荧光图谱分为3种类型:单峰型、双峰型和三峰型,5、10 m深水层CDOM的荧光图谱主要为单峰型和双峰型;3种峰型均包含位于激发波长(Ex)/发射波长(Em)为225~235 nm/325~350 nm的荧光峰,这主要是海水浮游植物自身降解产生的色氨酸产生的;在靠近海上油气开采平台和双台子河入海口的海域,油物质和CDOM的共同作用,使得位于这些区域的站点表层的荧光强度明显增强,荧光峰的范围也有所增大;表层、10 m深水层荧光强度最大值和最小值随站位的走势基本一致,而5 m深水层的走势就比较复杂;无论是哪种类型的荧光峰,其位置随着水深的增加基本保持不变,荧光强度随水深变化规律不明显。本研究中建立的由荧光峰强度(Af)和CDOM在440 nm处吸收系数[ag(440)]的比值来求解光谱斜率(S)的模型,可为利用荧光和可见光遥感技术反演光谱斜率S提供一种新方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号