首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   10篇
  国内免费   17篇
电工技术   5篇
综合类   7篇
化学工业   72篇
金属工艺   61篇
机械仪表   64篇
建筑科学   2篇
矿业工程   2篇
能源动力   84篇
轻工业   4篇
石油天然气   12篇
武器工业   26篇
无线电   17篇
一般工业技术   262篇
冶金工业   6篇
原子能技术   19篇
自动化技术   15篇
  2023年   9篇
  2022年   20篇
  2021年   18篇
  2020年   9篇
  2019年   12篇
  2018年   37篇
  2017年   26篇
  2016年   36篇
  2015年   20篇
  2014年   38篇
  2013年   33篇
  2012年   21篇
  2011年   45篇
  2010年   26篇
  2009年   35篇
  2008年   40篇
  2007年   22篇
  2006年   43篇
  2005年   28篇
  2004年   27篇
  2003年   18篇
  2002年   13篇
  2001年   22篇
  2000年   9篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1982年   5篇
排序方式: 共有658条查询结果,搜索用时 15 毫秒
1.
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs), release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K, pressure up to 2 MPa ab and release diameters up to 4 mm. Simulation results are compared against such experimentally measured parameters as hydrogen mass flow rate, flame length and radiative heat flux at different locations from the jet fire. The CFD model reproduces experiments with reasonable for engineering applications accuracy. Jet fire hazard distances established using three different criteria - temperature, thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.  相似文献   
2.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
3.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
4.
In this study, the effects of cryogenic and boronising treatments on the wear behaviour and microstructure of 1.2344 steel were evaluated. X-ray diffraction analysis and scanning electron microscopy were used to investigate the microstructure, percentage of the retained austenite, and the carbides' morphology. In addition, a micro-hardness test and pin-on-disk wear method were utilised to assess the samples’ wear resistance. The results showed that the use of a cryogenic treatment improved hardness and wear resistance by 25% and 39%, respectively, compared with a quenching - tempering heat treatment. In addition, cryogenic and boronising treatments improved hardness and wear resistance by 228% and 75%, respectively, compared with a quenching - tempering heat treatment. The improvement in the properties of cryogenically treated and boronised-cryogenised samples in comparison with the quenched-tempered ones is due to the transformation of retained austenite to martensite, precipitation of fine carbides, and better carbide distribution. Also, the formation of the Fe2B phase affected the properties of the boronised-cryogenised samples. Moreover, examining the wear levels revealed that the dominant wear mechanism is adhesive and tribochemical wear.  相似文献   
5.
Coriolis mass flowmeters are used for many applications, including as transfer standards for proficiency testing and liquified natural gas (LNG) custody transfer. We developed a model to explain the temperature dependence of a Coriolis meter down to cryogenic temperatures. As a first step, we tested our model over the narrow temperature range of 285 K to 318 K in this work. The temperature dependence predicted by the model agrees with experimental data within ± 0.08 %; the model uncertainty is 0.16 % (95 % confidence level) over the temperature range of this work.Here, basic concepts of Coriolis flowmeters will be presented, and correction coefficients will be proposed that are valid down to 5 K based on literature values of material properties.  相似文献   
6.
The operational flexibility of cryogenic batch distillation may propel its application in the Isotope Separation System of the fusion reactor. The batch distillation, unlike continuous distillation, is not a steady-state process. In order to obtain improved separation efficiency, a reasonable dynamic model of batch distillation should be developed. In this paper, dynamic simulations of the batch distillation separation process of a hydrogen-deuterium mixture were performed utilizing Aspen Plus and Aspen Dynamics. The validity of the established simulation model was firstly verified by our experimental results. Following that, two dynamic control structures, i.e., composition control and temperature control, were added to improve the recovery efficiency of batch distillation light component products. In comparison with the distillation without dynamic control structure, the distillation with composition control and temperature control can improve the H2 recovery ratio by 5.45% and 5.09%, respectively.  相似文献   
7.
The marine operation of floating liquefied natural gas (FLNG) demands process compactness, flexibility, simplicity of operation, safety, and higher efficiency. The modified single mixed refrigerant (MSMR) process satisfies the FLNG process requirements and is accepted as a suitable technology for FLNG operation. The aim of this study was to develop a plant-wide control structure or strategy that can sustain the economic efficiency of the MSMR process. The NGL recovery and liquefaction units were integrated in the MSMR process to provide a compact plant structure with an efficient operation. Steady-state optimality analysis was intensively conducted in a rigorous dynamic simulation environment to determine the correct variable to sustain the economic efficiency of MSMR process. The results showed that the flow rate ratio of heavy and light mixed refrigerant (HK/LK ratio) is a promising self-optimizing controlled variable. Controlling this variable can sustain the MSMR optimality, even when the process is operated under off-design operating conditions or in the presence of disturbances. Based on the control structure tests, the control configuration with the HK/LK ratio loop showed excellent performance, maintaining the process stability against a range of disturbances. The proposed approach can also be applied to any cryogenic liquefaction technology for determining a possible optimizing controlled variable.  相似文献   
8.
We report on experimental results of the thermal conductivity k of highly porous Si in the temperature range 4.2 to 20 K, obtained using the direct current (dc) method combined with thermal finite element simulations. The reported results are the first in the literature for this temperature range. It was found that porous Si thermal conductivity at these temperatures shows a plateau-like temperature dependence similar to that obtained in glasses, with a constant k value as low as 0.04 W/m.K. This behavior is attributed to the presence of a majority of non-propagating vibrational modes, resulting from the nanoscale fractal structure of the material. By examining the fractal geometry of porous Si and its fractal dimensionality, which was smaller than two for the specific porous Si material used, we propose that a band of fractons (the localized vibrational excitations of a fractal lattice) is responsible for the observed plateau. The above results complement previous results by the authors in the temperature range 20 to 350 K. In this temperature range, a monotonic increase of k with temperature is observed, fitted with simplified classical models. The extremely low thermal conductivity of porous Si, especially at cryogenic temperatures, makes this material an excellent substrate for Si-integrated microcooling devices (micro-coldplate).

PACS

61.43.-j; 63.22.-m; 65.8.-g  相似文献   
9.
《Ceramics International》2022,48(21):31344-31353
Highly thermally stable Er3+/Tm3+/Yb3+ tri-doped bismuth lanthanum tungstate phosphors were prepared by high temperature solid-state reaction method. The structural and morphological properties of the prepared phosphors were analysed by X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) coupled with energy dispersion spectrum (EDS). Visible upconversion (UC) luminescence was measured by exciting the phosphors with 980 nm laser radiation. The dependence of the UC intensity of each emission band of Er3+ and Tm3+ ions as a function of temperature in the range from 30 to 300 K was monitored. Fluorescence intensity ratios (FIR) of thermally coupled levels (TCL) and non-thermally coupled levels (NTCL) were analysed and verified with appropriate theoretical validation. The absolute (SA) and relative sensitivities (SR) were estimated and compared with the reported systems. In the present case of BiLaWO6: Er3+/Tm3+/Yb3+, SR (0.43 % K?1) related to TCL of Er3+ UC is found to have maximum sensitivity compared to any of the NTCL combinations at 300 K. From this study we inferred that the SR values estimated from NTCL are smaller than that of TCL involved in BLW: Er3+/Tm3+/Yb3+ phosphor. The temperature dependent CIE color coordinates were also evaluated in the cryogenic temperature region.  相似文献   
10.
This article presents machinability of 17-4PH stainless steel using a hybrid technique composed of plasma-enhanced turning and cryogenic turning. First of all, using some primary experimental tests and nonlinear regression, a mathematical model was developed for surface temperature of uncut chip as a function of plasma current and cutting parameters. Then, the influence of cutting speed (Vc), feed (f), and surface temperature of uncut chip (Tsm) was studied on surface roughness (Ra), cutting force (Fz), and tool flank wear (VB). The results show that hybrid turning (HYT) is able to lower the main cutting force and tool flank wear in comparison with conventional turning. In addition, surface roughness was improved except for high level of surface temperature of uncut chip. However, hardness measurement of machined workpiece showed that HYT does not change the hardness of machined surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号