首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36185篇
  免费   3985篇
  国内免费   2504篇
电工技术   1648篇
综合类   3246篇
化学工业   6498篇
金属工艺   2507篇
机械仪表   1905篇
建筑科学   5765篇
矿业工程   788篇
能源动力   1070篇
轻工业   1858篇
水利工程   442篇
石油天然气   695篇
武器工业   173篇
无线电   3905篇
一般工业技术   4561篇
冶金工业   1429篇
原子能技术   1502篇
自动化技术   4682篇
  2024年   48篇
  2023年   434篇
  2022年   705篇
  2021年   995篇
  2020年   1111篇
  2019年   1028篇
  2018年   981篇
  2017年   1184篇
  2016年   1236篇
  2015年   1210篇
  2014年   2093篇
  2013年   2011篇
  2012年   2665篇
  2011年   2991篇
  2010年   2343篇
  2009年   2546篇
  2008年   2259篇
  2007年   2696篇
  2006年   2387篇
  2005年   1866篇
  2004年   1559篇
  2003年   1394篇
  2002年   1268篇
  2001年   1030篇
  2000年   874篇
  1999年   675篇
  1998年   484篇
  1997年   406篇
  1996年   364篇
  1995年   305篇
  1994年   289篇
  1993年   204篇
  1992年   187篇
  1991年   156篇
  1990年   131篇
  1989年   97篇
  1988年   102篇
  1987年   67篇
  1986年   59篇
  1985年   42篇
  1984年   39篇
  1983年   26篇
  1982年   27篇
  1981年   26篇
  1980年   30篇
  1979年   7篇
  1978年   10篇
  1975年   5篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly’s behavior and physiology, including feeding, sleep–metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.  相似文献   
2.
概述了侧围加强内框总成与周边零件的匹配关系,从检具操作的人机工程出发,描述了侧围加强内框总成检具的2种定位方式和结构设计,对比了2种定位方式对于检测结果的影响,总结了其优点和弊端,结果表明侧围加强内框总成检具采用车内方向朝下的定位方式效果更好。  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.  相似文献   
5.
The transparent Er3+-Yb3+-doped fluoro-aluminosilicate glass-ceramic (GC) was prepared by melt-quenching. The crystal phase, morphology, and up-conversion (UC) luminescence of as-produced GC were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. The results show that BaYF5 nanocrystals were uniformly distributed in the glass matrix of the as-produced GC. When the as-produced GC was subjected to heat treatment, the crystallinity was increased, but the crystal identity remains unchanged. Such heat-treatment doubled the intensity of the UC luminescence, and this enhancement was ascribed to the increased incorporation of both Er3+ and Yb3+ ions into the lower phonon energy environment of BaYF5 nanocrystals. Furthermore, the heat-treated GC was stable against further crystallization, and consequently its UC luminescence was stable at the application temperature. The heat-treated GC was found to possess an outstanding temperature-sensing capability.  相似文献   
6.
Fe(III) ion can strongly inhibit the sulphidation amine flotation of smithsonite. However, its modification mechanism on smithsonite surface is still obscure. In this work, a systematic study of the modification of Fe(III) ion on smithsonite (1 0 1) surface was performed using DFT calculation. The optimal number of H2O ligands for Fe(III) ion hydrates in aqueous conditions was probed, and [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? were identified as the major modification species, then their adsorption and bonding mechanisms were further revealed by analyzing the frontier orbitals, density of state, Mulliken population, and electron density. The calculated adsorption structures were consistent with the former experiment, and we found the O site that bonded to the C atom on smithsonite surface was the most favorable position for [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? adsorptions. Besides, their adsorption mechanisms on smithsonite surface were principally due to the combined effect of FeO bond and hydrogen bonding. Simultaneously, hydrogen bonding greatly enhanced the stability of the adsorption structures. Moreover, the dominant orbital contribution for the bonding of FeO was primarily due to the orbital hybridization between Fe 3d and O 2p orbitals. This work can help in deeper understanding of the depression of Fe(III) ion on the sulphidation amine flotation of smithsonite.  相似文献   
7.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
8.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
9.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
10.
《Ceramics International》2022,48(2):2298-2305
As a promising anode candidate, hierarchical porous transition metal oxide nanosheets (TMO-NSs) have attracted significant interest due to their various advantages of abundant active sites, high specific capacity and shortened ion/electrons transport pathways. Although the TMO-NSs have been developed in the past decades, the previous synthesis strategies have some drawbacks such as high cost, complex synthesis techniques, and the requirement of special instruments. Herein, we develop a generalized and facile biomorphic method to synthesize various controllable hierarchical porous TMO-NSs by using waste bagasse as biotemplate. Furthermore, the porosity and pore size of as-prepared hierarchical porous TMO-NSs can be adjusted by changing the precursor solution concentration. Novel hierarchical porous TMO-NSs have been successfully prepared for many ternary or binary TMO, such as NiFe2O4, ZnFe2O4, ZnMn2O4, NiO and ZnO. Owing to their unique nanostructure, as-synthesized hierarchical porous TMO-NSs show an excellent electrochemical performance when used as anode for Li/Na-ion batteries. We believe that various hierarchical porous TMO-NSs available from the green, economical and convenient biomorphic strategy may lead to further developments in research and application on TMO-NSs materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号