首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10458篇
  免费   1464篇
  国内免费   450篇
电工技术   275篇
综合类   534篇
化学工业   1403篇
金属工艺   530篇
机械仪表   1781篇
建筑科学   409篇
矿业工程   198篇
能源动力   389篇
轻工业   166篇
水利工程   63篇
石油天然气   416篇
武器工业   81篇
无线电   1432篇
一般工业技术   3102篇
冶金工业   159篇
原子能技术   403篇
自动化技术   1031篇
  2024年   14篇
  2023年   144篇
  2022年   158篇
  2021年   285篇
  2020年   401篇
  2019年   364篇
  2018年   380篇
  2017年   446篇
  2016年   378篇
  2015年   486篇
  2014年   737篇
  2013年   894篇
  2012年   803篇
  2011年   862篇
  2010年   662篇
  2009年   655篇
  2008年   609篇
  2007年   702篇
  2006年   658篇
  2005年   550篇
  2004年   374篇
  2003年   354篇
  2002年   285篇
  2001年   231篇
  2000年   184篇
  1999年   152篇
  1998年   108篇
  1997年   86篇
  1996年   76篇
  1995年   70篇
  1994年   72篇
  1993年   40篇
  1992年   34篇
  1991年   32篇
  1990年   17篇
  1989年   13篇
  1988年   18篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1963年   1篇
  1959年   4篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
2.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
5.
Understanding aqueous dispersion, rheological properties and colloidal stabilisation mechanisms of hierarchically assembled ceramic powders is important for progress in the fields of catalysis, separation and/or adsorption. The present study was designed to evaluate the rheological and sedimentation behaviour of highly loaded aqueous suspensions (up to φA = 0.126) containing AlN-powder-hydrolysis-derived, micron-sized, mesoporous, gamma alumina (MA) particulates with a high surface area (~180 m2/g) dispersed with sodium polyacrylate (NaPAA). The as-prepared suspensions were prone to sedimentation and segregation. However, when divalent cations (Mg2+, Ca2+) or cellulose nanofibers were added, the formation of interparticle association networks in the aqueous suspensions containing MA particles was triggered, facilitating their long-term resistance to sedimentation lasting more than 12 weeks.  相似文献   
6.
Determining the structure of the (oligomeric) intermediates that form during the self-assembly of amyloidogenic peptides is challenging because of their heterogeneous and dynamic nature. Thus, there is need for methodology to analyze the underlying molecular structure of these transient species. In this work, a combination of fluorescence quenching, photo-induced crosslinking (PIC) and molecular dynamics simulation was used to study the assembly of a synthetic amyloid-forming peptide, Aβ16-22. A PIC amino acid containing a trifluormethyldiazirine (TFMD) group—Fmoc(TFMD)Phe—was incorporated into the sequence (Aβ*16–22). Electrospray ionization ion-mobility spectrometry mass-spectrometry (ESI-IMS-MS) analysis of the PIC products confirmed that Aβ*16–22 forms assemblies with the monomers arranged as anti-parallel, in-register β-strands at all time points during the aggregation assay. The assembly process was also monitored separately using fluorescence quenching to profile the fibril assembly reaction. The molecular picture resulting from discontinuous molecule dynamics simulations showed that Aβ16-22 assembles through a single-step nucleation into a β-sheet fibril in agreement with these experimental observations. This study provides detailed structural insights into the Aβ16-22 self-assembly processes, paving the way to explore the self-assembly mechanism of larger, more complex peptides, including those whose aggregation is responsible for human disease.  相似文献   
7.
Many occupations require standing for prolonged periods, which can be a major contributor to musculoskeletal problems and cause disturbances in different parts of the body, especially the lower back and lower extremities. The aim of this study was to investigate the effect of custom‐made insoles and exercise training on the lower limb and lower back discomfort in workers on a production line at a rubber tire factory. One hundred male workers (mean age 35.96 years, work experience of 10.62 years, standing time 6.58 hr) participated in this randomized controlled trial. The men were randomly assigned to one of four groups: (a) custom‐made insole plus lower limb exercises, (b) insoles only, (c) lower limb exercises only, and (d) no intervention. Discomfort level was recorded with a visual analog scale and a body map. The data were analyzed with analysis of covariance. The results showed a significant difference in discomfort levels between groups in the lower back (p = .001), thigh (p = .001), and knee (p = .001) areas. The combined insole and exercise group had less discomfort in the lower back, thigh, and knee. In the group that used the insole only without exercises, the discomfort level in the lower back area was reduced. The results indicate that the simultaneous use of insoles and exercises might be an effective intervention to reduce discomfort in the lower limbs and lower back in workers who remain standing for prolonged periods.  相似文献   
8.
Hollow carbon–silica nanospheres that exhibit angle‐independent structural color with high saturation and minimal absorption are made. Through scattering calculations, it is shown that the structural color arises from Mie resonances that are tuned precisely by varying the thickness of the shells. Since the color does not depend on the spatial arrangement of the particles, the coloration is angle independent and vibrant in powders and liquid suspensions. These properties make hollow carbon–silica nanospheres ideal for applications, and their potential in making flexible, angle‐independent films and 3D printed films is explored.  相似文献   
9.
Biodegradable implants are required in order to provide successful treatment of injuries. Temporary magnesium‐based implants with particular properties are needed in cases when it is desirable not only to maintain vital activity, but also to initiate the self‐healing process of damaged bones or tissues as well. Unfortunately, the use of magnesium alloys is limited due to the fast biodegradability of the applied material. The aim of this research is to improve the corrosion resistance of magnesium alloys by sonochemical treatment in silk solution followed by additional layer‐by‐layer deposition of natural silk on the magnesium surface. The sonication process is carried out at a frequency of 20 kHz during 5–10 min, while the duration of the silk layer deposition is 15 min. The corrosion behavior of magnesium substrates modified by natural silk layer‐by‐layer assembly is studied. Magnesium substrates sonochemically treated in silk solution demonstrate three times better corrosion resistance compared to control samples sonochemically treated in water. Additional deposition of a silk layer enhances obtained corrosion resistance by 18 times, resulting in a 54‐fold increase overall.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号