首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8009篇
  免费   865篇
  国内免费   348篇
电工技术   944篇
综合类   795篇
化学工业   665篇
金属工艺   483篇
机械仪表   418篇
建筑科学   954篇
矿业工程   249篇
能源动力   269篇
轻工业   367篇
水利工程   183篇
石油天然气   530篇
武器工业   642篇
无线电   676篇
一般工业技术   1031篇
冶金工业   234篇
原子能技术   93篇
自动化技术   689篇
  2024年   11篇
  2023年   120篇
  2022年   156篇
  2021年   223篇
  2020年   237篇
  2019年   234篇
  2018年   217篇
  2017年   259篇
  2016年   290篇
  2015年   273篇
  2014年   436篇
  2013年   496篇
  2012年   529篇
  2011年   629篇
  2010年   510篇
  2009年   530篇
  2008年   529篇
  2007年   701篇
  2006年   553篇
  2005年   457篇
  2004年   391篇
  2003年   292篇
  2002年   256篇
  2001年   175篇
  2000年   136篇
  1999年   113篇
  1998年   74篇
  1997年   81篇
  1996年   66篇
  1995年   56篇
  1994年   42篇
  1993年   31篇
  1992年   24篇
  1991年   28篇
  1990年   14篇
  1989年   18篇
  1988年   10篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1959年   2篇
  1954年   2篇
排序方式: 共有9222条查询结果,搜索用时 49 毫秒
1.
2.
《Ceramics International》2022,48(6):8325-8330
In this work, we propose a facile approach to fabricate Ti4+-doped Li3V2(PO4)3/C (abbreviated as C-LVTP) nanofibers using an electrospinning route followed by a high temperature treatment. In this designed nanocomposite, the ultrafine LVTP dots are homogeneously dispersed into one-dimensional carbon nanofibers and the Ti4+ doping does not destroy the crystal structure of monoclinic Li3V2(PO4)3. Compared to the undoped Li3V2(PO4)3/C (abbreviated as C-LVP), the as-fabricated C-LVTP fibers present higher reversible capacity, superior high-rate capability as well as better cyclic property. Especially, the C-LVT7%P cathode delivers not only high capacities of 187.2 and 160.3 mAh g?1 at 0.5 and 10 C respectively, but also stable cyclic property with the reversible capacity of 135.8 mAh g?1 at 20 C following 500-cycle spans. The good battery characteristics of C-LVT7%P can be mainly ascribed to Ti4+ doping, which can increase the electrical conductivity and Li+ diffusion coefficient.  相似文献   
3.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
4.
刘清友  刘文全  朱海燕  赵建国 《石油学报》2019,40(10):1255-1262
连续油管钻井机器人利用机身内外的钻井液压力差作为动力源,可在牵引连续油管的同时加载钻压。以钻井机器人为基础,建立连续油管钻柱动力学模型,并推导出通过钻井液排量控制钻压和钻速的单参数控制数学模型;对钻井机器人引入调速回路,建立具有调速功能的钻柱动力学模型;在溢流阀调定压力大于机身内外压差时,推导出利用钻井液排量和节流阀流通面积两种参数控制钻压、钻速的数学模型,在溢流阀调定压力小于机身内外压差时,推导出利用钻井液排量、节流阀流通面积和溢流阀调定压力3种参数控制钻压、钻速的数学模型;以11.43 cm(4.5英寸)井眼为例,对上述3种数学模型进行了分析。分析结果表明:钻压、钻速随钻井液排量的增加基本呈线性增加,在钻井液排量大于0.005 m3/s时,钻井机器人能够向前爬行,在钻井液排量大于0.005 7 m3/s时,钻头能够正常钻进;调节节流阀流通面积和溢流阀调定压力,可以在一定范围内无级调钻压和钻速;3种控制方法相结合,可以实现小排量、大钻压,及大排量、小钻压等钻井参数的控制。以控制模型为基础,针对不同井下工况建立钻进工艺的专家数据库,以钻井机器人为"大脑",结合井下随钻测量数据就能够实现闭环控制,自动钻进。  相似文献   
5.
The rate of penetration (ROP) model is of great importance in achieving a high efficiency in the complex geological drilling process. In this paper, a novel two-level intelligent modeling method is proposed for the ROP considering the drilling characteristics of data incompleteness, couplings, and strong nonlinearities. Firstly, a piecewise cubic Hermite interpolation method is introduced to complete the lost drilling data. Then, a formation drillability (FD) fusion submodel is established by using Nadaboost extreme learning machine (Nadaboost-ELM) algorithm, and the mutual information method is used to obtain the parameters, strongly correlated with the ROP. Finally, a ROP submodel is established by a neural network with radial basis function optimized by the improved particle swarm optimization (RBFNN-IPSO). This two-level ROP model is applied to a real drilling process and the proposed method shows the best performance in ROP prediction as compared with conventional methods. The proposed ROP model provides the basis for intelligent optimization and control in the complex geological drilling process.  相似文献   
6.
Although business process outsourcing (BPO) can reduce cost and enhance the competitiveness of firms, the implementation of BPO projects is unsatisfactory. By integrating knowledge management capability theory and risk-based view, we develop a model of how different types of BPO risks affect project satisfaction and how knowledge management capability changes the influences of BPO risks. A survey of 121 BPO projects was conducted among BPO client department manager and project manager through a pairwise design. Empirical evidence reveals that social system, technical system, and project management risks negatively affect BPO project satisfaction. However, cultural, technological, and structural levels of knowledge management capabilities weaken the negative risk effects of social system, technical system, and project management, respectively. Different types of risks and knowledge management capabilities should be matched to achieve effective risk management.  相似文献   
7.
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano‐biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles—from self‐assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.  相似文献   
8.
3D fabrics as reinforcement can be manipulated in discrete numbers of weave designs in order to earn maximum gain so that the desired mechanical properties of the composites can be achieved eventually for particular end use. Thus interest has been focused to investigate tensile, impact and knife penetration properties of 3D orthogonal and interlock structures of different weave designs by varying their binder interlacement patterns keeping stuffer binder ratio constant. The tensile properties were effectively influenced by the linear densities as well as crimp of load bearing tows, which were determined by the weave design of the fabric. The compact structure generated from regular weave pattern in case of 1 × 1 plain orthogonal and 1 × 1 plain interlock fabrics exhibited better impact energy absorption. Owing to higher values of peak energy in the knife penetration test, it is revealed that more is the number of fibres in the in-plane direction better is the protection.  相似文献   
9.
Micro ultrasonic machining (micro-USM) is an unconventional micromachining technology that has capability to fabricate high aspect ratio micro-holes, intricate shapes and features on various hard and brittle materials. The material removal in USM is based on brittle fracture of work materials. The mechanical properties and fracture behaviour are different for varied hard and brittle materials, which would make a big difference in the processing capability of micro-USM. To study the processing capability of USM and exploit its potential, the material removal of work materials, wear of abrasive particles and wear of machining tools in USM of three typical hard and brittle materials including float glass, alumina, and silicon carbide were investigated in this work. Both smoothed particle hydrodynamics (SPH) simulations and verification experiments were conducted. The material removal rate is found to decrease in the order of glass, alumina, and silicon carbide, which can be well explained by the simulation results that cracking of glass is faster and larger compared to the other materials. Correspondingly, the tool wear rate also dropped significantly thanks to the faster material removal, and a formation of concavity on the tool tip center due to intensive wear was prevented. The SPH model is proved useful for studying USM of different hard and brittle materials, and capable of predicting the machining performance.  相似文献   
10.
This paper addresses an improved optimization method to enhance the energy extraction capability of fuel cell implementations. In this study, the proposed method called Dynamic Cuckoo Search Algorithm (DCSA) is tested in a stand-alone fuel cell in order to control the system power under dynamic temperature response. In the operational process, a fuel cell is connected to a load through a dc-dc boost converter, and DCSA is utilized to adjust the switching duration in dc-dc converter by using voltage, current and temperature parameters. In this way, it controls the output voltage to maximize power delivery capability at the demand-side and eliminates the drawback of conventional cuckoo search algorithm (CSA) which cannot change duty cycle under operating temperature variations. In this regard, DCSA shows a significant improvement in terms of system response and achieves a more efficient power extraction than the conventional CSA method. In order to demonstrate the system performance, the stand-alone fuel cell system is constructed in Simulink environment via a processor-in the-loop (PIL) based digital implementation and analyzed by using different optimization methods. In the analysis section, the results of the proposed method are compared with conventional methods (perturb&observe mppt, incremental conductance mppt, and particle swarm optimization). In this context, convergence speed and efficiency analysis for both methods verify that the DCSA gives original results compared to conventional methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号