首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4650篇
  免费   200篇
  国内免费   448篇
电工技术   113篇
综合类   197篇
化学工业   370篇
金属工艺   1030篇
机械仪表   181篇
建筑科学   5篇
矿业工程   28篇
能源动力   181篇
轻工业   41篇
石油天然气   1篇
武器工业   37篇
无线电   886篇
一般工业技术   1895篇
冶金工业   125篇
原子能技术   140篇
自动化技术   68篇
  2024年   13篇
  2023年   55篇
  2022年   104篇
  2021年   120篇
  2020年   95篇
  2019年   102篇
  2018年   91篇
  2017年   146篇
  2016年   126篇
  2015年   138篇
  2014年   136篇
  2013年   213篇
  2012年   394篇
  2011年   463篇
  2010年   362篇
  2009年   385篇
  2008年   367篇
  2007年   368篇
  2006年   353篇
  2005年   242篇
  2004年   179篇
  2003年   143篇
  2002年   113篇
  2001年   101篇
  2000年   83篇
  1999年   66篇
  1998年   63篇
  1997年   43篇
  1996年   39篇
  1995年   38篇
  1994年   35篇
  1993年   26篇
  1992年   18篇
  1991年   14篇
  1990年   14篇
  1989年   13篇
  1988年   10篇
  1987年   11篇
  1986年   8篇
  1985年   2篇
  1984年   4篇
  1981年   1篇
  1979年   1篇
排序方式: 共有5298条查询结果,搜索用时 15 毫秒
1.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
2.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
3.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.  相似文献   
4.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
5.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
6.
《Ceramics International》2019,45(15):18501-18508
The modification and tuning features of nanostructured films are of great interest because of controllable and distinctive inherent properties in these materials. Here, nanocrystalline MoS2 films were fabricated on the stainless steels by a radio frequency magnetron sputtering at ambient temperature. X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and Raman scattering spectroscopy were used to study the chemical state, chemical composition, crystal structure and vibrational properties of the fabricated MoS2 films. The bias voltage dependent structural evolution and its influence on the optical properties of MoS2 nanocrystalline films were systematically investigated. Besides, the residual stresses of MoS2 nanocrystalline films were explored by employing sin2ψ approach. X-ray diffraction demonstrates that the nanocrystalline MoS2 films have single-phase hexagonal crystal structure. All MoS2 films are polycrystalline in nature. The bandgap values are found to be intensively dependent on bias voltage. Our findings show that the nanocrystalline MoS2 films with different physical properties and intense quantum confinement effect can be realized through adjusting bias voltages. This work may provide deep insight for realizing transitional metal dichalcogenide-based nanostructured film optoelectronic devices with tunable physical properties through a traditional, very cost-effective, and large-scale fabrication method.  相似文献   
7.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
8.
SnO2 是最早使用也是目前使用最广泛的一种气敏材料 ,使用该材料设计制作的气敏传感器具有许多优点。在简要介绍溅射镀膜的成膜过程和特点的基础上 ,着重介绍了SnO2 膜的制备流程 ,分析了功率和温度变化对成膜质量的影响  相似文献   
9.
运用SRIM2006软件对Nd2Fe14B靶溅射过程进行了模拟,并就入射离子的入射能量和角度进行了分析,得到溅射产额与入射离子能量、入射角度以及溅射靶材的一般规律:1)溅射产额随着入射离子能量的增加而增加,在低能量区域增加很快,到了高能量区域增加变缓;2)溅射产额随着入射离子入射角度的增大逐渐增大,且在70°~80°出现极大值,如当入射离子的入射角度为75°,入射离子能量为7 keV时,溅射产额可达4.398(原子.离子–1);3)溅射原子的摩尔比与靶材原子摩尔比存在一定偏差,导致薄膜成分与靶材成分不一致。  相似文献   
10.
Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2-coated and non-coated surfaces were used for comparison. In the case of the TiO2-coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号