首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4827篇
  免费   720篇
  国内免费   223篇
电工技术   161篇
综合类   272篇
化学工业   1416篇
金属工艺   677篇
机械仪表   260篇
建筑科学   94篇
矿业工程   258篇
能源动力   274篇
轻工业   165篇
水利工程   4篇
石油天然气   58篇
武器工业   48篇
无线电   313篇
一般工业技术   1308篇
冶金工业   289篇
原子能技术   151篇
自动化技术   22篇
  2024年   14篇
  2023年   153篇
  2022年   134篇
  2021年   184篇
  2020年   240篇
  2019年   229篇
  2018年   239篇
  2017年   287篇
  2016年   214篇
  2015年   231篇
  2014年   243篇
  2013年   308篇
  2012年   324篇
  2011年   311篇
  2010年   199篇
  2009年   249篇
  2008年   196篇
  2007年   308篇
  2006年   264篇
  2005年   218篇
  2004年   185篇
  2003年   191篇
  2002年   125篇
  2001年   131篇
  2000年   108篇
  1999年   78篇
  1998年   70篇
  1997年   53篇
  1996年   39篇
  1995年   39篇
  1994年   46篇
  1993年   34篇
  1992年   26篇
  1991年   13篇
  1990年   19篇
  1989年   13篇
  1988年   22篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1959年   1篇
  1951年   2篇
排序方式: 共有5770条查询结果,搜索用时 35 毫秒
1.
It is extremely desirable to develop high hydrogen evolution activity and stable visible-light-driven photocatalysts. The sluggish oxidation process and holes accumulation are the main obstacles to high catalysis activity and photo-stability. An efficient γ-NiOOH/ZnCdS photocatalyst was prepared by in-situ hydrothermal method. The γ-NiOOH nanosheets distribute on ZnCdS nanospheres surface and accelerate holes transfer. The hydrogen evolution rate is up to 48.60 mmol g?1 h?1 under visible-light illumination (λ = 400–780 nm), about 10.8 times of pure ZnCdS (4.50 mmol g?1 h?1) and 1.8 times of general β-NiOOH modified ZnCdS (27.40 mmol g?1 h?1). And apparent quantum yield of γ-NiOOH/ZCS-100 is up to 18.23% (400 nm). The carrier lifetime extends from 5.50 ns (ZnCdS) to 6.10 ns (γ-NiOOH/ZCS), examined by steady photoluminescence and time-resolved photoluminescence. Moreover, the γ-NiOOH/ZCS photocatalyst has exhibited excellent photo-stability even after one-year of storage. The γ-NiOOH nanosheets can be an excellent co-catalyst on accelerating both holes transfer and oxidation process for high photo-stability and photo-activity.  相似文献   
2.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
3.
Adjusting the band gap of organic-inorganic composites by chemical bonding can effectively construct Step-scheme (S-scheme) heterojunctions, featuring properties of fast photogenerated charge migration and excellent photocatalytic performance. In this work, a novel perylene-3, 4, 9, 10-tetracarboxylicdiimide (PDI)-titanium dioxide (TiO2) heterojunction is elaborately synthesized through simple solvent compounding method. The monodispersed spherical TiO2 nanoparticles was prepared with the capping agents of oleylamine and oleic acid, and suffered by a ligand exchange process with nitrosonium tetrafluoroborate (NOBF4) to remove oleylamine and oleic acid. The NOBF4 ligands were further replaced by PDI super molecular nanosheets to obtain two dimensional (2D)-zero dimensional (0D) PDI-TiO2 composites. TiO2 nanoparticles are evenly anchored on the surface of PDI nanosheets with intimate contact. The PDI-TiO2 composites has emerged considerably superior activity in hydrogen evolution. The highest hydrogen evolution rate for PDI-TiO2composites with the PDI weight percentage of 2.4% was 9766 μmol h?1 g?1 under solar light irradiation, which is 2.56 times of TiO2-NOBF4 catalyst. Moreover, PDI-TiO2 composites possess stoichiometric overall water splitting performance with H2 and O2 release rates of 238.20 and 114.18 μmol h?1 g?1. The superior photocatalytic performance of PDI-TiO2 composites can be attributed to the dramatic increase in visible and NIR light absorption caused by π-π stacking structure of PDI, the prevented charge recombination by the S-scheme heterojunction, and the enhanced oxygen evolution by the stronger oxidation capability of PDI. PDI supramolecular nanosheets may work as a novel functional support for many types of semiconductor nanomaterials as graphene, which will display a wide range of application prospects in the energy and environmental fields.  相似文献   
4.
5.
6.
Uniformly dispersed boron nitride nanosheets (BNNSs) reinforced silicon nitride (Si3N4) composites were prepared by surface modification assisted flocculation combined with SPS sintering. In order to improve the dispersibility of the BNNSs in the composites, the liquid phase stripped BNNSs are surface functionalized by a two-step covalently modification. The amino-modified BNNSs (NH2-BNNSs) and Si3N4 powders have opposite surface potential, mixed evenly by electrostatic interaction during flocculation. The results showed that mechanical properties of Si3N4 composites were obviously enhanced by adding NH2-BNNSs. The fracture toughness and bending strength of Si3N4 composites added 0.75 wt% NH2-BNNSs were increased by 34% and 28%, respectively, compared with monolithic Si3N4. Toughening mechanisms are synergistic action of the torn, pull-out or bridging of BNNSs and crack deflection mechanisms with microstructural analyzes. The dielectric properties of the Si3N4 ceramics are also improved after the addition of NH2-BNNSs.  相似文献   
7.
Preparation of three-dimensional (3D) networks has received significant attention as an effective approach for applications involving transport phenomena, such as thermal management materials, and several nanomaterials have been examined as potential building blocks of 3D networks for the improvement of heat conduction in polymer nanocomposites. For that purpose, nanocarbons such as graphene and graphite nanoplatelets have been spotlighted as suitable filler materials because of their excellent thermal conductivities (ca. 102–103 W·(m·K)?1 along their lateral axes) and morphological merits. However, the implications of morphological features such as the lateral length and thickness of graphene or graphene-like materials have not yet been identified. In this study, a controlled dissociation of bulk graphite to graphite nanosheets (GNSs) using a low-cost, ecofriendly bead mill process was extensively examined and, when configured in a 3D framework architecture formation, the size-controlled GNSs demonstrated that the thermal conductivities of a 3D interconnected framework of GNSs and the corresponding polymer nanocomposite were intimately correlated with the size of the GNSs, thus demonstrating the successful preparation of an efficient thermal management material without highly sophisticated efforts. The capability of controlling the lateral size and thickness of the GNSs as well as the use of a 3D interconnected framework architecture should greatly assist the commercialization of high-quality graphene-based thermal management materials in a scalable production process.  相似文献   
8.
The solar energy utilization in built environment has been limited due to its low heat flux, uneven distribution in time and space and temporal difference in day and night. The phase change materials have been used to collect the fluctuant solar energy to form a stable energy source for the terminal equipment of the buildings. In this study, the hybrid organic phase change materials was prepared for the capillary radiant heating system which formed a cascade utilization of solar energy. Firstly, lauric acid and stearic acid were selected as the basic organic phase change materials and the binary equilibrium phase diagram was completed based on the method of step cooling curve according to the experimental tests data. The results showed that the phase transition temperature of the mixed acid at the lowest eutectic point was 31.2℃ and the latent heat value was 264.3 kJ/kg when the mass mixing ratio was 70% for lauric acid and 30% for stearic acid. Secondly, the expanded graphite was used as an additive to enwrap the mixed acid and enhance the heat conductivity. The experimental results showed that when the mass proportion of expanded graphite in the mixed acid was 10%, the mixed acid could be completely enclosed by expanded graphite and the stability of melting and solidification was optimal. Additionally, the phase transition temperature of the hybrid phase change material was 31.5℃ and the latent heat value was 217.4 kJ/kg. The novel hybrid phase change material has a lower eutectic point and a higher latent heat of phase change, so it has a large application space and is quite suitable for the cascade utilization of solar energy with capillary network heating system.  相似文献   
9.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   
10.
A short-time and low-cost synthesis route was used to produce large lateral size (from 2 to 15 μm) from monolayers to few layers of graphene by a two-step process of electrochemical exfoliation with a deep eutectic solvent in a mixture with water that can be reused, and ultrasonic bath. The graphene was characterized by SEM, TEM, AFM, Raman and electrochemical activity. During the electrochemical exfoliation, high expanded graphene particles were obtained and these were dispersed in a mixture of water with 5%wt ethylene glycol by an ultrasonic bath in order to complete the exfoliation process. An enhancement of the electrical conductivity of these dispersions was obtained with the increase of graphene concentration, 0.38 mg/mL, which best result was achieved with 30 wt% water and a DC voltage of 10 V. It was possible to add a conductive layer to a glass substrate with the graphene obtained and Tyndall effect was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号