首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11135篇
  免费   655篇
  国内免费   212篇
电工技术   66篇
综合类   582篇
化学工业   5776篇
金属工艺   75篇
机械仪表   92篇
建筑科学   192篇
矿业工程   57篇
能源动力   557篇
轻工业   1743篇
水利工程   8篇
石油天然气   894篇
武器工业   22篇
无线电   138篇
一般工业技术   886篇
冶金工业   755篇
原子能技术   79篇
自动化技术   80篇
  2024年   33篇
  2023年   123篇
  2022年   170篇
  2021年   267篇
  2020年   248篇
  2019年   232篇
  2018年   184篇
  2017年   267篇
  2016年   282篇
  2015年   272篇
  2014年   469篇
  2013年   529篇
  2012年   703篇
  2011年   777篇
  2010年   603篇
  2009年   671篇
  2008年   578篇
  2007年   748篇
  2006年   767篇
  2005年   647篇
  2004年   602篇
  2003年   498篇
  2002年   440篇
  2001年   363篇
  2000年   250篇
  1999年   250篇
  1998年   172篇
  1997年   150篇
  1996年   124篇
  1995年   110篇
  1994年   85篇
  1993年   63篇
  1992年   59篇
  1991年   44篇
  1990年   40篇
  1989年   33篇
  1988年   30篇
  1987年   21篇
  1986年   18篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1974年   3篇
  1968年   2篇
  1964年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
2.
Fluoro-substituted and heteroaromatic compounds are valuable intermediates for a variety of applications in pharma- and agrochemistry and synthetic chemistry. This study investigates the chemoenzymatic preparation of chiral alcohols bearing a heteroaromatic ring with an increasing degree of fluorination in α-position. Starting from readily available picoline derivatives prochiral α-halogenated acyl moieties were introduced with excellent selectivity and 64–95 % yield. The formed carbonyl group was subsequently reduced to the corresponding alcohols using the alcohol dehydrogenase from Lactobacillus kefir, yielding an enantiomeric excess of 95–>99 % and up to 98 % yield.  相似文献   
3.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   
4.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   
5.
Blends of plasticized casein (CA) and poly(vinyl alcohol) (PVA) at various ratios were prepared using the solution‐casting method. The prepared blend solutions were cast onto polystyrene petri plates and bend films were obtained. The characterization of films was performed using Fourier transform infrared spectroscopy, tensile testing, thermogravimetric analysis, contact angle measurements and water vapour permeability. According to spectroscopic analysis, there were interactions between the CA and PVA molecules. The tensile test results showed that the tensile strength of CA increased with increasing PVA content. The flexibility of plasticized CA film increased with the incorporation of PVA. The thermal stability and water vapour barrier properties of plasticized CA improved on blending with PVA. As a result, it was seen that blend films were successfully produced using plasticized CA and PVA with potential for use in biodegradable packaging applications. © 2019 Society of Chemical Industry  相似文献   
6.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
7.
Visual pH-sensing films were fabricated using cellulose nanofibrils (CNF) reinforced polyvinyl alcohol (PVA) and alizarin. The relationships between the ratio of PVA: CNF hydrogel (2:1, 1:1, 1:2) and the physical properties and colour response efficiency of indicator films were investigated. Fourier transform infrared spectroscopy of films evidenced alizarin and CNF was properly incorporated by physical interaction. A new weak X-ray diffraction peak appeared at 2θ = 22.4°, which was affected by the incorporation of CNF. The increase in the CNF content induced enhancements of thermal stability, tensile strength, water contact angle and colour sensitivity of the indicator films. The colourimetric films had a higher sensitivity to discolouration when exposed to acidic vapours than alkaline vapours. The films presented a remarkable colour change varied from purple in alkaline condition to yellow in acidic condition. Therefore, this colourimetric film can be used as a volatile acid sensor for intelligent packaging.  相似文献   
8.
Degrading 2‐ethylhexyl‐containing PVC floorings (eg DEHP‐PVC floorings) and adhesives emit 2‐ethylhexanol (2‐EH) in the indoor air. The danger of flooring degradation comes from exposing occupants to harmful phthalates plasticisers (eg DEHP), but not from 2‐EH as such. Since the EU banned the use of phthalates in sensitive applications, the market is shifting to use DEHP‐free and alternative types of plasticisers in PVC products. However, data on emissions from DEHP‐free PVC floorings are scarce. This study aimed at assessing the surface and bulk emissions of two DEHP‐free PVC floorings over three years. The floorings were glued on the screed layer of concrete casts at 75%, 85%, and 95% RH. The volatile organic compounds (VOCs) were actively sampled using FLEC (surface emissions) and micro‐chamber/thermal extractor (µ‐CTE, bulk emissions) onto Tenax TA adsorbents and analyzed with TD‐GC‐MS. 2‐EH, C9‐alcohols, and total volatile organic compound (TVOC) emissions are reported. Emissions at 75% and 85% RH were similar. As expected, the highest emissions occurred at 95% RH. 2‐EH emissions originated from the adhesive. Because the two DEHP‐free floorings tested emitted C9‐alcohols at all tested RH, it makes the detection of flooring degradation harder, particularly if the adhesive used does not emit 2‐EH.  相似文献   
9.
汪希铭  程凤  高晶  王璐 《纺织学报》2020,41(12):31-36
为改善壳聚糖基纳米纤维膜的耐水性和结构稳定性,对静电纺丝制得的壳聚糖/聚氧化乙烯(PEO)纳米纤维膜进行戊二醛交联改性,研究不同交联时间下纳米纤维膜在模拟人体缓冲液中微观形态结构、化学结构和结晶结构的变化,并对交联后纤维膜的耐水性和力学性能进行表征。结果表明:壳聚糖基纳米纤维膜经戊二醛交联处理后,在缓冲液中浸泡24 h纤维形态的稳定性得到明显改善,且随着交联时间的增加,纤维膜在缓冲液中的吸水率逐渐增加,溶失率逐渐降低;交联改性改变了壳聚糖大分子固有的结晶结构,使纤维膜的初始模量提高,力学强度随交联时间的增加先增加后降低。  相似文献   
10.
研究了抑菌纸对吐司保鲜作用的影响。将抑菌纸与PP薄薄膜结合得到纸塑复合材料来包装吐司,与单一的PP薄膜包装以及未采取包装的吐司对比质构、色差、水分活度、菌落总数、热焓值的差异。结果表明:采用纸塑复合材料包装的吐司相较于仅用PP薄膜包装以及未采取包装的吐司,其质构特性和色差的劣变变缓,水分活度有一定程度降低,菌落总数的增长得到有效抑制,热焓值的上升也得到延缓。该抑菌纸与PP薄膜结合得到的复合材料可避免直接向食品中添加防腐剂,并且能有效延长吐司的货架期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号