首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39773篇
  免费   5922篇
  国内免费   2217篇
电工技术   4873篇
技术理论   7篇
综合类   3841篇
化学工业   2575篇
金属工艺   1287篇
机械仪表   2977篇
建筑科学   1304篇
矿业工程   1483篇
能源动力   1989篇
轻工业   760篇
水利工程   340篇
石油天然气   1492篇
武器工业   906篇
无线电   10932篇
一般工业技术   4492篇
冶金工业   1626篇
原子能技术   661篇
自动化技术   6367篇
  2024年   71篇
  2023年   603篇
  2022年   1031篇
  2021年   1226篇
  2020年   1340篇
  2019年   1116篇
  2018年   1119篇
  2017年   1422篇
  2016年   1605篇
  2015年   1754篇
  2014年   2688篇
  2013年   2477篇
  2012年   3352篇
  2011年   3575篇
  2010年   2680篇
  2009年   2539篇
  2008年   2403篇
  2007年   2901篇
  2006年   2498篇
  2005年   2113篇
  2004年   1744篇
  2003年   1358篇
  2002年   1131篇
  2001年   961篇
  2000年   806篇
  1999年   641篇
  1998年   449篇
  1997年   439篇
  1996年   332篇
  1995年   281篇
  1994年   257篇
  1993年   224篇
  1992年   161篇
  1991年   116篇
  1990年   103篇
  1989年   85篇
  1988年   55篇
  1987年   35篇
  1986年   21篇
  1985年   34篇
  1984年   18篇
  1983年   17篇
  1982年   43篇
  1981年   26篇
  1980年   14篇
  1979年   12篇
  1978年   5篇
  1963年   4篇
  1959年   7篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):27487-27495
ZnO nanorod arrays (NRs) with a large number of sharp tips and uniform shapes were grown on the carbon cloth (CC) by a simple hydrothermal method. Titanium nitride (TiN) nanoparticles with various thicknesses were deposited on the ZnO NRs by magnetron sputtering to obtain ZnO/TiN core-shell arrays. Field emission (FE) performance of ZnO NRs show close dependence on TiN coating thickness. The turn-on field first decreases and then increases with increasing TiN coating thickness from 60 nm to 300 nm. The arrays with a design architecture can strike a balance between increased emission sites and limited field shielding effects. ZnO/TiN240 core-shell NRs have the lower turn-on electric field at 0.79 V/μm and the higher current densities at 9.39 mA/cm2. The field enhancement factor (β) of ZnO/TiN240 is about 3.2 times that of the bare ZnO NRs. On the other hand, the electrochemical properties were improved due to the formation of core-shell heterojunction on the ZnO/TiN interface and porous structure, which makes the ion and charge transport more convenient. Hence, this work not only revealed that the ZnO/TiN core-shell structure exhibited excellent improvement in both FE and supercapacitors applications, but also that growing arrays on CC was expected to achieve flexible display.  相似文献   
2.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
3.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   
4.
Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.  相似文献   
5.
A typical problem in Northeast China is that a large amount of surplus electricity has arisen owing to the serious photovoltaic power curtailment phenomenon. To effectively utilize the excess photovoltaic power, a hybrid energy system is proposed that uses surplus electricity to produce hydrogen in this paper. It combines solar energy, hydrogen production system, and Combined Cooling Heating and Power (CCHP) system to realize cooling, heating, power, and hydrogen generation. The system supplies energy for three public buildings in Dalian City, Liaoning Province, China, and the system configuration with the lowest unit energy cost (0.0615$/kWh) was obtained via optimization. Two comparison strategies were used to evaluate the hybrid energy system in terms of unit energy cost, annual total cost, fossil energy consumption, and carbon dioxide emissions. Subsequently, the annual total energy supply, typical daily loads, and cost of the optimized system were analyzed. In conclusion, the system is feasible for small area public buildings, and provides a solution to solve the phenomenon of photovoltaic power curtailment.  相似文献   
6.
针对突发扩频信号用户资源扩大、终端功率降低、系统容量提升等需求,提出了一种低载噪比突发扩频信号的快速捕获硬件实现方法。采用分段匹配滤波器加多普勒并行相干积累的方法,基于硬件实现从算法到工程进行全流程优化设计,最终实现最优的捕获性能。应用结果表明,该硬件设计实现方案的快速捕获性能优越,设计方案正确、可行,已成功应用于工程建设中。  相似文献   
7.
《Ceramics International》2022,48(22):33167-33176
This study evaluates the luminescence performance of fired clay bricks coated with SrAl2O4:Eu/Dy phosphor. To do so, SrAl2O4:Eu/Dy phosphor was first produced using the traditional solid-state reaction synthesis technique. The prepared phosphor was then used for coating fired clay bricks to analyze the luminescence performance via spectral analysis, decay characteristics, and microstructure of the bricks. The results reveal that excitation and emission spectra of the phosphor coated bricks range from 200 to 480 nm and 455 to 650 nm, respectively, suggesting that the phosphor coated bricks have the capacity of absorbing light with a wide range of wavelengths. The peak wavelength projected at 511 nm in the emission spectrum is achieved, which indicates 4f65 d1-4f7 transition of Europium (Eu2+). The repeated excitation and deexcitation of Eu2+ by using hole traps and trap levels offered by Dysprosium (Dy3+), exist between the ground and the excited state of Eu2+ leads to luminescent phenomenon. Moreover, the decay characteristics has revealed that phosphor coated bricks can emit light for a considerable amount of time (>8.5 min) upon the removal of the excitation source. The results reveal that phosphor coated bricks has the potential of increasing energy efficiency of residential and commercial buildings.  相似文献   
8.
During the hot summer season, using electricity systems increases the local anthropogenic heat emission, further increasing the temperature. Regarding anthropogenic heat sources, electric energy consumption, heat generation, indoor and outdoor heat transfer, and exchange in buildings play a critical role in the change in the urban thermal environment. Therefore, the Weather Research and Forecasting (WRF) Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment. Through the building effect parameterization (BEP) of a multistorey urban canopy scheme, a building energy model (BEM) to increase the influence of indoor air conditioning on the electricity consumption system was proposed. In other words, the BEP+BEM urban canopy parameterization scheme was set. High temperatures and a summer heat wave were simulated as the background weather. The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer. During the day, the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city, whereas at night, the air temperature generally increases by 0.6 ℃, especially in densely populated areas, with a maximum temperature rise of approximately 1.2 ℃ from 22:00 to 23:00. When the indoor air conditioning target temperature is adjusted to 25–27 ℃, the total energy release of the air conditioning system is reduced by 12.66%, and the temperature drops the most from 13:00 to 16:00, with an average of approximately 1 ℃. Further, the denser the building is, the greater the temperature drop.  相似文献   
9.
Single-cell RNA-sequencing (scRNA-seq) is a rapidly increasing research area in biomedical signal processing. However, the high complexity of single-cell data makes efficient and accurate analysis difficult. To improve the performance of single-cell RNA data processing, two single-cell features calculation method and corresponding dual-input neural network structures are proposed. In this feature extraction and fusion scheme, the features at the cluster level are extracted by hierarchical clustering and differential gene analysis, and the features at the cell level are extracted by the calculation of gene frequency and cross cell frequency. Our experiments on COVID-19 data demonstrate that the combined use of these two feature achieves great results and high robustness for classification tasks.  相似文献   
10.
《Ceramics International》2022,48(2):1494-1511
The application of insulation materials in buildings and energy storage facilities is gaining global attention to reduce energy consumption, heat loss, and CO2 emissions. Given the high insulation performance, glass foam is gaining popularity replacing combustible, high energy-consuming, and costly conventional insulation materials. The industrial process of glass foam manufacturing is an energy-consuming and non-ecofriendly process which requires the annealing of glass around its melting temperature. Therefore, researchers have developed powder sintering and gel casting methods to sinter glass foam mix at a temperature slightly above its glass transition point. However, research findings on these two methods are scattered because of the different parameters being used by researchers. The properties and performances of glass foam depend on the processing parameters, especially on the materials design and sintering conditions. Therefore, this study aimed to provide a comprehensive review on the key parameters for material selection and sintering of glass foams and provide necessary guidelines for the best practice and a direction for future research. Moreover, this review covers the current strategies and challenges associated with the powder sintering and gel casting methods including their sustainability and environmental performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号