首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3177篇
  免费   489篇
  国内免费   379篇
电工技术   327篇
综合类   481篇
化学工业   137篇
金属工艺   50篇
机械仪表   160篇
建筑科学   85篇
矿业工程   36篇
能源动力   89篇
轻工业   76篇
水利工程   55篇
石油天然气   55篇
武器工业   48篇
无线电   479篇
一般工业技术   373篇
冶金工业   22篇
原子能技术   36篇
自动化技术   1536篇
  2024年   8篇
  2023年   44篇
  2022年   74篇
  2021年   92篇
  2020年   119篇
  2019年   124篇
  2018年   101篇
  2017年   132篇
  2016年   157篇
  2015年   164篇
  2014年   189篇
  2013年   281篇
  2012年   256篇
  2011年   267篇
  2010年   214篇
  2009年   226篇
  2008年   221篇
  2007年   220篇
  2006年   169篇
  2005年   158篇
  2004年   118篇
  2003年   116篇
  2002年   85篇
  2001年   81篇
  2000年   65篇
  1999年   61篇
  1998年   40篇
  1997年   42篇
  1996年   35篇
  1995年   39篇
  1994年   28篇
  1993年   20篇
  1992年   19篇
  1991年   8篇
  1990年   11篇
  1989年   14篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1974年   1篇
  1973年   1篇
  1959年   1篇
排序方式: 共有4045条查询结果,搜索用时 46 毫秒
1.
共同购买网络的推荐系统应用越加广泛,仅基于网络内生结构变量研究其共同购买链接的经济意义已有局限,故加入网络口碑这一外生变量,进行更全面的分析。采用了社会网络方法中指数随机图模型进行建模,主要围绕产品销售量、产品入度、差评率和评论数4个方面因素,探究其对共同购买网络中共同购买链接形成的影响。结果显示,销售量、产品入度和评论数对共同购买链接形成的影响呈正比关系,而差评率则会显著地降低产品共同购买的几率。该指数随机图构建出的共同购买网络为在线电商平台管理网络口碑和推荐系统优化设计提供有益参考。  相似文献   
2.
Modern magnetic nanomaterial processing operations are progressing rapidly and require increasingly sophisticated mathematical models for their optimization. Stimulated by such developments, in this paper, a theoretical and computational study of a steady magnetohydrodynamic nanofluid over an exponentially stretching/shrinking permeable sheet with melting (phase change) and radiative heat transfer is presented. Besides, wall transpiration, that is, suction and blowing (injection), is included. This study deploys Buongiorno's nanofluid model, which simulates the effects of the Brownian motion and thermophoresis. The transport equations and boundary conditions are normalized via similarity transformations and appropriate variables, and the similarity solutions are shown to depend on the transpiration parameter. The emerging dimensionless nonlinear coupled ordinary differential boundary value problem is solved numerically with the Newton-Fehlberg iteration technique. Validation with special cases from the literature is included. The increase in the magnetic field, that is, the Hartmann number, is observed to elevate nanoparticle concentration and temperature, whereas it dampens the velocity. Higher values of the melting parameter consistently decelerate the boundary layer flow and suppress temperature and nanoparticle concentration. A higher radiative parameter strongly increases temperature (and thermal boundary layer thickness) and weakly accelerates the flow. The increase in the Brownian motion reduces nanoparticle concentrations, whereas a greater thermophoretic body force strongly enhances them. The Nusselt number and Sherwood number are observed to be decreased with an increasing Hartmann number, whereas they are elevated with a stronger wall suction and melting parameter.  相似文献   
3.
In this paper, we focus on the pinning exponential synchronisation and passivity of coupled reaction–diffusion neural networks (CRDNNs) with and without parametric uncertainties, respectively. On the one hand, with the help of designed nonlinear pinning controllers and Lyapunov functional method, sufficient conditions are established to let the CRDNNs with hybrid coupling and mixed time-varying delays realise exponential synchronisation and passivity. On the other hand, considering that the external perturbations may lead the reaction–diffusion neural networks (RDNNs) parameters to containing uncertainties, the robust pinning exponential synchronisation and robust pinning passivity for coupled delayed RDNNs with parametric uncertainties are investigated by designing appropriate pinning control strategies. Finally, the effectiveness of the theoretical results are substantiated by the two given numerical examples.  相似文献   
4.
This paper studies an enhanced state estimation problem of distributed parameter processes modeled by a linear parabolic partial differential equation using mobile sensors. The proposed estimation scheme contains a state estimator and the guidance of mobile sensors, where the spatial domain is decomposed into multiple subdomains according to the number of sensors and each sensor is capable of moving within the respective subdomain. The state estimator is desired to make the state estimation error system exponentially stable while providing an performance bound. The mobile sensor guidance is used to enhance the transient performance of the error system. By the Lyapunov direct technique, an integrated design of state estimator and mobile sensor guidance laws is developed in the form of bilinear matrix inequalities (BMIs) to meet the desired design objectives. Moreover, to make the performance bound as small as possible, a suboptimal enhanced state estimation problem is formulated as a BMI optimization one, which can be solved via an iterative linear matrix inequality algorithm. Finally, numerical simulations are given to show the effectiveness of the proposed method.  相似文献   
5.
ABSTRACT

As an emerging field, the G-Itô stochastic calculus plays an important role in describing the model uncertainty. Many interesting works have been done on stochastic differential equations driven by G-Brownian motion (G-SDEs). Among the theories and applications of G-SDEs, the stability is the vital important one. In this paper, we investigate the stabilisation for G-SDEs based on G-Lyapunov function and aperiodically adaptive intermittent controller. As an application, the sufficient conditions are established for the stabilisation of stochastic Cohen–Grossberg neural networks driven by G-Brownian motion (G-SCGNNs). Finally, an example is provided to illustrate the obtained results.  相似文献   
6.
For a distributed parameter system with an input delay in the boundary, a feedback control law is presented by means of the backstepping method. The square integrability of input signal is verified based on the target system. Then, the boundedness and invertibility of the corresponding backstepping transformation are proved under the regularity of system and the admissibility of feedback operator. Thus, the resulting closed-loop system is shown to be exponentially stable. Finally, as an application, a numerical simulation of a one-dimensional Schrödinger equation with a delay input is carried out, and the simulation results demonstrate the effectiveness of the suggested control law.  相似文献   
7.
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity.  相似文献   
8.
This article introduces a new class of functional-coefficient predictive regression models, where the regressors consist of auto-regressors and latent factor regressors, and the coefficients vary with certain index variable. The unobservable factor regressors are estimated through imposing an approximate factor model on high dimensional exogenous variables and subsequently implementing the classical principal component analysis. With the estimated factor regressors, a local linear smoothing method is used to estimate the coefficient functions (with appropriate rotation) and obtain a one-step ahead nonlinear forecast of the response variable, and then a wild bootstrap procedure is introduced to construct the prediction interval. Under regularity conditions, the asymptotic properties of the proposed methods are derived, showing that the local linear estimator and the nonlinear forecast using the estimated factor regressors are asymptotically equivalent to those using the true latent factor regressors. The developed model and methodology are further generalized to the factor-augmented vector predictive regression with functional coefficients. Finally, some extensive simulation studies and an empirical application to forecast the UK inflation are given to examine the finite-sample performance of the proposed model and methodology.  相似文献   
9.
When five axis CNC machine tools follow series linear toolpath segments, the drives experience velocity, acceleration and jerk discontinuities at the block transition points. The discontinuities result in fluctuations on machine tool motions which lead to poor surface quality. This paper proposes to insert quintic and septic micro-splines for the tool tip and tool-orientation, respectively, at the adjacent linear toolpath segments. Optimal control points are calculated for position and orientation splines to achieve C3 continuity at the junctions while respecting user-defined tolerance limits. The geometrically smoothed corners are traveled at a smoothly varying feed with cubic acceleration trajectory profile. The proposed method is experimentally demonstrated to show improvements in motion smoothness and tracking accuracy in five-axis machining of free-form surfaces found in dies, molds and aerospace parts.  相似文献   
10.
In this study, we develop an inventory model with stochastic replenishment intervals and special sale offer from a supplier. The replenishment interval is assumed to obey a truncated exponential distribution and shortage is partially backordered. Our goal in this research is to maximize the total profit of cost savings due to special sale offer from supplier. A closed-form solution of the model and its convexity condition is developed. A numerical example with real world data is provided to illustrate the theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号