首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  国内免费   16篇
  完全免费   125篇
  自动化技术   292篇
  2020年   1篇
  2018年   1篇
  2017年   7篇
  2016年   5篇
  2015年   18篇
  2014年   36篇
  2013年   18篇
  2012年   37篇
  2011年   51篇
  2010年   29篇
  2009年   31篇
  2008年   27篇
  2007年   15篇
  2006年   12篇
  2005年   3篇
  2004年   1篇
排序方式: 共有292条查询结果,搜索用时 31 毫秒
1.
基于谱图理论的流形学习算法   总被引:41,自引:4,他引:37  
流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行总结和对进一步的研究做了展望.  相似文献
2.
流形学习概述   总被引:28,自引:0,他引:28  
流形学习是一种新的非监督学习方法,近年来引起越来越多机器学习和认知科学工作者的重视.为了加深对流形学习的认识和理解,该文由流形学习的拓扑学概念入手,追溯它的发展过程.在明确流形学习的不同表示方法后,针对几种主要的流形算法,分析它们各自的优势和不足,然后分别引用Isomap和LLE的应用示例.结果表明,流形学习较之于传统的线性降维方法,能够有效地发现非线性高维数据的本质维数。利于进行维数约简和数据分析.最后对流形学习未来的研究方向做出展望,以期进一步拓展流形学习的应用领域.  相似文献
3.
一种改进的局部切空间排列算法   总被引:18,自引:0,他引:18       下载免费PDF全文
杨剑  李伏欣  王珏 《软件学报》2005,16(9):1584-1590
局部切空间排列算法(local tangent space alignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitional local tangent space alignment,简称PLTSA).它建立在VQPCA(vector quantization principal component analysis)算法和LTSA  相似文献
4.
基于放大因子和延伸方向研究流形学习算法   总被引:16,自引:0,他引:16  
何力  张军平  周志华 《计算机学报》2005,28(12):2000-2009
流形学习是一种新的非监督学习方法,可以有效地发现高维非线性数据集的内在维数和进行维数约简,近年来越来越受到机器学习和认知科学领域研究者的重视.虽然目前已经出现了很多有效的流形学习算法,如等度规映射(ISOMAP)、局部线性嵌套(Locally Linear Embedding,LLE)等,然而,对观测空间的高维数据与降维后的低维数据之间的定量关系,尚难以直观地进行分析.这一方面不利于对数据内在规律的深入探察,一方面也不利于对不同流形学习算法的降维效果进行直观比较.文中提出了一种方法,可以从放大因子和延伸方向这两个方面显示出观测空间的高维数据与降维后的低维数据之间的联系;比较了两种著名的流形学习算法(ISOMAP和LLE)的性能,得出了一些有意义的结论;提出了相应的算法从而实现了以上理论.对几组数据的实验表明了研究的有效性和意义.  相似文献
5.
基于集成的流形学习可视化   总被引:14,自引:0,他引:14  
流形学习有助于发现数据的内在分布和几何结构.目前已有的流形学习算法对噪音和算法参数都比较敏感,噪音使得输入参数更加难以选择,参数较小的变化会导致差异显著的学习结果.针对Isomap这一流形学习算法,提出了一种新方法,通过引入集成学习技术,扩大了可以产生有效可视化结果的输入参数范围,并且降低了对噪音的敏感性.  相似文献
6.
流形学习算法综述   总被引:9,自引:3,他引:6       下载免费PDF全文
流形学习算法作为一种新的维数降维方法工具,其目标是发现嵌入在高维数据空间中的低维流形结构,并给出一个有效的低维表示。目前,流形学习已成为模式识别、机器学习和数据挖掘领域的研究热点问题。介绍了流形学习的基本思想、一些最新研究成果及其算法分析,并提出和分析了有待进一步研究的问题。  相似文献
7.
邻域参数动态变化的局部线性嵌入   总被引:9,自引:1,他引:8       下载免费PDF全文
文贵华  江丽君  文 军 《软件学报》2008,19(7):1666-1673
局部线性嵌入是最有竞争力的非线性降维方法,有较强的表达能力和计算优势.但它们都采用全局一致的邻城大小,只适用于均匀分布的流形,无法处理现实中大量存在的非均匀分布流形.为此,提出一种邻域大小动态确定的新局部线性嵌入方法.它采用Hessian局部线性嵌入的概念框架,但用每个点的局部邻域估计此邻域内任意点之间的近似测地距离,然后根据近似测地距离与欧氏距离之间的关系动态确定该点的邻域大小,并以此邻域大小构造新的局部邻域.算法几何意义清晰,在观察数据稀疏和数据带噪音等情况下,都比现有算法有更强的鲁棒性.标准数据集上的实验结果验证了所提方法的有效性.  相似文献
8.
融合局部结构和差异信息的监督特征提取算法   总被引:7,自引:4,他引:3       下载免费PDF全文
针对监督局部保持投影(Supervised locality preserving projection, SLPP)存在过学习和不能较好地保持图像空间的差异信息等问题,造成算法性能不够好, 提出了一种新的基于流形学习的监督特征提取方法(Supervised local structure and diversity projection, S-LSDP). S-LSDP从信息统计量角度引入差异信息,并给出度量差异信息大小的准则(差异离散度) 及明确的物理含义;然后通过最小化局部离散度和最大化差异离散度准则提取投影方向. 投影后的特征既能有效地保持图像之间的局部结构属性,又能较好地保持图像之间的差异信息, 而且避免了过学习问题.在UMIST, Yale, PIE和AR数据库上的实验结果表明了该算法的有效性.  相似文献
9.
基于流形学习和SVM的Web文档分类算法   总被引:7,自引:4,他引:3       下载免费PDF全文
王自强  钱旭 《计算机工程》2009,35(15):38-40
为解决Web文档分类问题,提出一种基于流形学习和SVM的Web文档分类算法。该算法利用流形学习算法LPP对训练集中的高维Web文档空间进行非线性降维,从中找出隐藏在高维观测数据中有意义的低维结构,在降维后的低维特征空间中利用乘性更新规则的优化SVM进行分类预测。实验结果表明该算法以较少的运行时间获得更高的分类准确率。  相似文献
10.
Embedding new data points for manifold learning via coordinate propagation   总被引:6,自引:1,他引:5  
In recent years, a series of manifold learning algorithms have been proposed for nonlinear dimensionality reduction. Most of them can run in a batch mode for a set of given data points, but lack a mechanism to deal with new data points. Here we propose an extension approach, i.e., mapping new data points into the previously learned manifold. The core idea of our approach is to propagate the known coordinates to each of the new data points. We first formulate this task as a quadratic programming, and then develop an iterative algorithm for coordinate propagation. Tangent space projection and smooth splines are used to yield an initial coordinate for each new data point, according to their local geometrical relations. Experimental results and applications to camera direction estimation and face pose estimation illustrate the validity of our approach.
Shiming XiangEmail:
  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号