首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1551篇
  国内免费   143篇
  完全免费   1408篇
  自动化技术   3102篇
  2020年   5篇
  2019年   15篇
  2018年   26篇
  2017年   82篇
  2016年   66篇
  2015年   169篇
  2014年   219篇
  2013年   190篇
  2012年   420篇
  2011年   441篇
  2010年   321篇
  2009年   338篇
  2008年   327篇
  2007年   241篇
  2006年   144篇
  2005年   57篇
  2004年   27篇
  2003年   9篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有3102条查询结果,搜索用时 46 毫秒
1.
微粒群算法综述   总被引:278,自引:15,他引:263  
讨论微粒群算法的开发与应用。首先回顾从1995年以来的开发过程,然后根据一些已有的测试结果对其参数设置进行系统地分析,并讨论一些非标准的改进手段,如簇分解、选择方法、邻域算子、无希望/重新希望方法等。介绍了一些常用的测试函数,以及与其他演化算法的比较。最后讨论了一些已经开发和在将来有希望的领域中的应用。  相似文献
2.
粒子群优化算法   总被引:138,自引:11,他引:127  
粒子群优化(PSO)算法是一类随机全局优化技术,PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优匹域。PSO的优势在于简单实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基于的PSO算法,若干类改进的PSO算法及其应用,并讨论将来可能的研究内容。  相似文献
3.
一种保证全局收敛的PSO算法   总被引:102,自引:5,他引:97  
在对基本PSO算法分析的基础上,提出了一种能够保证以概率1收敛于全局最优解的PSO算法——随机PSO算法(stochastic PSO,SPSO),并利用Solis和Wets的研究结果对其全局收敛性进行了理论分析,给出了两种停止进化微粒的重新产生方法.最后以典型优化问题的实例仿真验证了SPSO算法的有效性.  相似文献
4.
This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, Integer Programming and 1 errors-in-variables problems, as well as problems in noisy and continuously changing environments, are reported. Finally, a Composite PSO, in which the heuristic parameters of PSO are controlled by a Differential Evolution algorithm during the optimization, is described, and results for many well-known and widely used test functions are given.  相似文献
5.
免疫粒子群优化算法   总被引:96,自引:10,他引:86  
受生物体免疫系统免疫机制的启发,论文把免疫系统的免疫信息处理机制引入到粒子群优化算法中,给出了免疫粒子群优化算法。这种免疫粒子群优化算法结合了粒子群优化算法具有的全局寻优能力和免疫系统的免疫信息处理机制,并且实现简单,改善了粒子群优化算法摆脱局部极值点的能力,提高了算法进化过程中的收敛速度和精度。一个求多维函数最优值的计算机仿真对比结果表明,免疫粒子群优化算法的收敛性能优于粒子群优化算法。  相似文献
6.
粒子群优化算法   总被引:83,自引:2,他引:81  
系统地介绍了粒子群优化算法,归纳了其发展过程中的各种改进如惯性权重、收敛因子、跟踪并优化动态目标等模型。阐述了算法在目标函数优化、神经网络训练、模糊控制系统等基本领域的应用并给出其在工程领域的应用进展,最后,对粒子群优化算法的研究和应用进行了总结和展望,指出其在计算机辅助工艺规划领域的应用前景。  相似文献
7.
一种改进的自适应逃逸微粒群算法及实验分析   总被引:67,自引:3,他引:64       下载免费PDF全文
赫然  王永吉  王青  周津慧  胡陈勇 《软件学报》2005,16(12):2036-2044
分析了变异操作对微粒群算法(particle swarmoptimization,简称PSO)的影响,针对收敛速度慢、容易陷入局部极小等缺点,结合生物界中物种发现生存密度过大时会自动分家迁移的习性,给出了一种自适应逃逸微粒群算法,并证明了它依概率收敛到全局最优解.算法中的逃逸行为是一种简化的确定变异操作.当微粒飞行速度过小时,通过逃逸运动使微粒能够有效地进行全局和局部搜索,减弱了随机变异操作带来的不稳定性.典型复杂函数优化的仿真结果表明,该算法不仅具有更快的收敛速度,而且能更有效地进行全局搜索.  相似文献
8.
基于MATLAB的粒子群优化算法及其应用   总被引:65,自引:2,他引:63  
该文探讨了粒子群优化算法及其改进,并提出了算法的离线性能评估准则和在线性能评估准则。在此基础上重点研究了MATLAB环境中粒子群优化算法的仿真方法,主要包括数据结构设计、参数编码以及进化信息跟踪等关键内容。最后,对典型的多峰函数优化试验表明:作者开发的粒子群优化算法结构简单,运行快,是一个通用有效的优化工具。  相似文献
9.
一种更简化而高效的粒子群优化算法   总被引:61,自引:0,他引:61       下载免费PDF全文
胡旺  李志蜀 《软件学报》2007,18(4):861-868
针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(ext  相似文献
10.
基于粒子群算法求解多目标优化问题   总被引:55,自引:0,他引:55  
粒子群优化算法自提出以来,由于其容易理解、易于实现,所以发展很快,在很多领域得到了应用.通过对粒子群算法全局极值和个体极值选取方式的改进,提出了一种用于求解多目标优化问题的算法,实现了对多目标优化问题的非劣最优解集的搜索,实验结果证明了算法的有效性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号